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ABSTRACT: The contact between a spherical indenter and a solid is considered. A numerical 

finite element model (F. E. M) to taking into account the surface tension of the solid is 

presented and assessed. It is shown that for nano-indentation of soft materials, the surface 

tension of the solid influences significantly the reaction force due to indentation. The validity 

of the classical Hertz model is defined. In very good approximation, the force vs. indentation 

depth curve can be fitted by a power law function F = a b where F denotes the force acting 

on the indentor,  the indentation depth, a and b  ]1, 1.5] are constants depending on the 

materials and the size of the indentor. 

RÉSUMÉ: Le contact entre un indenteur sphérique et un solide élastique est considéré. Un 

modèle par éléments finis permettant de prendre en compte la tension de surface du solide est 

présenté et validé. Il est montré que pour la nano-indentation de matières souples, la tension 

de surface du solide peut influencer considérablement la courbe force vs. profondeur 

d’indentation. Il est ainsi définit quand le modèle de Hertz classique ne convient plus. En très 

bonne approximation, la courbe force vs. profondeur d’indentation peux être décrite par une 

croissance allométrique F = a b où F désigne la force agissant sur l'indenteur,  la 

profondeur d’indentation, a et b  ]1, 1.5] sont des constantes qui dépendent du matériau et 

du rayon de pointe. 
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1. Introduction 

Indentation tests are powerful techniques to measure, at least, the elastic moduli 

of materials.
1,2

 However, considering soft materials, such measurements using nano-

indentor generally give an overestimate of the Young’s modulus measured at larger 

scales in uniaxial tension
3,4,5

. In order to distinguish mechanical properties at the 

surface and in the bulk of a given material, it is convenient to evaluate the effect of 

surface forces on the mechanical response. To achieve this objective, this paper 

quantifies the effect of the surface tension of soft material on the reaction force due 

to indentation for nano-indentation tests through finite elements simulations. Indeed, 

it is not easy to derive an analytical solution for the elastic problem coupled with 

surface tension while, the finite elements method gives numerical solutions for such 

problems
6
. Moreover finite element simulation has the advantage to allow to 

consider various mechanical behaviours and shapes of the indentor. However, this 

paper only concerns spherical indenters and elastic materials. 

In preliminary to the simulation, one must consider that the surface tension, t, 

varies with the surface curvature only at very low radius, typically less than one 

nanometre
7
. For our purpose, t should remain constant. It is well known that the 

energy associated to the surface tension can be equivalently seen as an energy 

corresponding to a change in area or as the work done by a tension
8
, usually called 

Laplace tension. 

2. Mechanical model 

2.1. Finite element model 

A simple way is proposed herein to account for surface tension using a standard 

finite element software, Cast3M
©9

. A stretched “membrane” linked to the surface of 

the solid is considered. The Figure 1 shows schematically the axisymmetrical (the x1 

axis is equivalent to x2 axis) mesh of the solid, x3 being the axis of symmetry. It is 

obvious that such computations must be performed with large displacements 

analysis
10

 even at small strains so that the tension in the stretched “membrane” can 

induce a reaction force along the x3 axis. The spherical indentor is assumed to be 

perfectly rigid. Therefore, the indentor corresponds to a region where the material 

can not penetrate. A step of computation corresponds to an increase of indentation 

depth. The boundary conditions are defined as following: imposed displacements for 

nodes in contact with the indentor and free displacements outside the contact region 

for the surface nodes. These conditions are actualised at each step of the 

computation. 



Adding surface tension in the Hertz model          3 

Mesomechanics2007, 13-17th may 2007, Giens (France) 

The axisymmetric finite elements model (FEM) of the membrane located at the 

surface uses four nodes isoparametric elements. This membrane must be sufficiently 

thin to have a negligible effect on the mechanical response in absence of surface 

tension, i. e. t = 0. As far as possible, the tension in the membrane must be constant 

to simulate a constant surface tension. A constant bi-axial constraint 0 in the x1 and 

x2 axis are then imposed in these elements. Their mechanical and geometric 

properties are set to Et = E, t = 0, e < r / 1000, 0  > 10
4
 E where Et is the Young’s 

modulus, t the Poisson’s ratio, e the thickness of the membrane and 0 the pre-

constraint in the radial and ortho-radial directions. The surface tension value in the 

undeformed state, i. e. a planar membrane, is denoted t0 and equal to e.0. In order to 

avoid numerical convergence problems, the nodes initially aligned along the x3 axis 

of each element constituting the “membrane” remains aligned along the x3 axis for 

each step of the computation, as shown in Figure 2 (left). 

The boundary conditions at x1 = D and x3 = h impose that displacements are 

null, i. e. u1(x1 = D) = u3(x3 = h) = 0. Practically, boundaries are set sufficiently far 

from the indenter to avoid any border effect. This means that D / r and h / r are 

sufficiently large so that it makes no significant difference to increase D or h. 

Moreover, it makes also no significant difference to impose u1 = 0 and u3  0 (the 

corresponding nodal force f3 is thus zero) along the x3 axis and u1  0 (f1 = 0) and 

u3 = 0 along the x1 axis. 

 

Figure 1. Schematic finite elements axisymmetrical (x1 = x2) mesh showing the solid 

substrate, the spherical indenter and the stretched membrane associated to the 

surface, acting like surface tension. 

2.2. Assessment from numerical analysis 

Since the pre-constraint 11 = 22 = t0 / e is constant, using a standard procedure 

of the finite element software, a rotation of the element induces an increase of the 

tension along the element. Figure 2 (right) shows the evolution of the tension in the 

surface element versus the angle of rotation with the r axis. Since practically this 
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angle is low for all computations presented below, always less than 15°, the surface 

tension or equivalently the constraint in the element remains almost constant
6
. 

Indeed, for moderate indentation depths, i. e.  / r < 1, the tension varies less than 

3 %. 
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Figure 2. (left) Kinematic and equilibrium of the four nodes elements used to 

simulate the surface tension (scheme not at scale). (right) Evolution of the surface 

tension t with the rotation of the surface element. 

The evolution of the surface tension inside an element is representative of the 

local discrepancy and informs about the maximum error on the surface tension 

located at the limit of the contact area where the rotation of the element is maximum. 

Nevertheless, it is convenient to quantify the mean error by considering the work 

done by the surface tension, i. e. the retrieved surface energy, considering the 

inflation of a soap bubble, i. e. a spherical stretched membrane, representative of a 

spherical indentor. The Figure 3 shows the work done by the surface tension, 

normalized by the surface energy, below a spherical indentor versus curvature 

corresponding to a contact area comprise between 0 and r. This test assesses the 

ability of this simple numerical model to quite accurately account for a constant 

surface tension for contact area where a / r is typically less than 0.4. 
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Figure 3. Evolution of surface energy and the maximal surface tension in soap 

bubble vs. curvature. 

Still considering only the surface tension, like in the soap bubble problem, 

numerical results from the FEM are compared in Figure 4 to the analytical solution
6
 

from eq. A1. 2 derived in Appendix 1. Results are in good agreements since for 

 / r < 0.1 the error is less than 3 %. It is noticeable that the fit of the FEM curve 

with allometric functions for  / r < 0.1 leads to a very good estimate for values of 

 / r  until 1. 
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Figure 4. Comparison of the force vs. indentation depth curves for FEM and 

analytical solution given in Appendix 1 corresponding to a membrane at a constant 

tension t = 107 N / m  and D = 102 mm. 
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2.3. Contact condition (Hertz Problem) 

The contact Hertz problem of a rigid sphere indenting an elastic semi-infinite 

medium leads to the following analytical prediction for a frictionless contact: 

FH = (4/3) E* r
0.5

 
1.5

    (1) 

where E* = E / (1  ²), E and  are respectively the Young’s modulus and Poisson’s 

ratio of the medium, r the radius of the indentor,  the indentation depth and FH the 

reaction force acting on the indentor. 

The two extreme cases, i. e. 0° and 90°, are examined for the friction angle 

between the indentor and the solid surface. Considering the force versus indentation 

depth, the difference between the frictionless case and adhesive case is not 

significant whatever the ratio between surface tension and elastic modulus is. This 

insensitivity to the contact condition is well known for the Hertz contact problem
11

. 

The Figure 5 shows the ability of the FEM to confirm this result, at least for low 

indentation depths ( / r < 0.25). The difference between the FEM and the analytical 

result at low contact areas ( / r < 0.05) can easily be reduced by refining the mesh. 

The assumption of the insensitivity to the contact condition is still valid when 

accounting for surface tension in the Hertz contact problem or even considering the 

“drum” problem of Appendix 1. Indeed, Figure 6 corresponds to a the force vs. 

indentation depth curve for the following parameters: t = 0.03 N/m, E = 1 MPa, 

 = 0.42, r = 50 nm, D = 100 r and h = 30 r. The mechanical response is dominated 

by the surface tension since the reaction force at /r = 0.125 is approximately 3 times 

the prediction of Hertz (F/r=0.125  3 F/r=0.125). The difference between the 

computation considering a frictionless contact and that considering an adhesive 

contact is always less than 10
-3

. Figure 6. also shows that the force vs. indentation 

depth curve is well fitted by a power law function F  3.7 
1.2

 for this particular case. 
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Figure 5. Comparison of the force vs. indentation depth obtained with the FEM for 

perfectly sliding contact and a perfectly adhesive contact with the analytical 

solution of the Hertz contact problem. 
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Figure 6. Comparison of the force vs. indentation depth obtained with the 

FEM considering a frictionless contact (fitted by a power law curve) and a perfectly 

adhesive contact corresponding to a mechanical response dominated by the surface 

tension. 

2.4. Border effect 

The analytical solution derived in Appendix 1 indicates that, for a given 

indentation depth, the reaction force acting on a stretched membrane tends to zero 

when the diameter D tends to infinity. The relative sizes D / r and h / r of the FEM 

must be sufficiently large to account for this tendency, especially at large values of 

surface stiffness modulus, i. e. typically at t / r E > 1. The Figure 7 quantifies the 

border effect as a function of the size of the FEM For high surface stiffness moduli, 

the relative size D / r of the FEM should be at least 300 in order to reach the 

asymptotic value and h must be of the order of magnitude of D. 
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Figure 7. Force vs. size of the FEM for r = 50 nm and  = 5 nm. 

3. Assessment from experiments 

3.1. Indentation of a stretched rubber membrane 

In order to validate the numerical computations, an indentation test using a pre-

stretched rubber membrane and steel balls, shown in Photo 1, has been performed. 

The indenter is a sphere and the membrane is initially a planar disc. For large 

indentation depths, the tension in the membrane increases slightly due to the 

stretching of the rubber. Nevertheless, since the pre-stretch ratio is 4 in bi-axial 

tension, it is expected that the tension in the membrane is almost constant during the 

test. The rubber is an industrial grade of rubber for balloons. The tension in the 

membrane is estimated by measuring the curvature of the pressurized membrane 

corresponding to the gravity acting on 10 cm of water. The accuracy of this measure 

is 5 %. Both dry and lubricated contact conditions are shown in Figure 8, for two 

radii of the indenting sphere. Finite elements results are compared to experimental 

results. The power law curves 

F  a 
b
     (2)

 

where  is the indentation depth, a and b depend on material constants and indentor 

radius and F is the force acting on the indentor. The constants a and b are obtained 

by fitting the numerical results at small indentation depths, typically  < r / 4. Since 

the tension in the membrane is known in a range 5 %, the error bars have been 

associated to the numerical predictions. Numerical results show a very good 
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agreement with experiments in a relatively large range of the  / r ratio. Experiments 

confirm that the contact conditions, frictionless or not, can be seen as a second order 

parameter. Since less numerical convergence problems appear for frictionless 

contact and owing to the insensitivity to the contact condition, all the following 

computations have been performed with this assumption. 

  

Photo 1. Photo of a metallic sphere indenting a rubber membrane. 
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Figure 8. Force vs. indentation depth corresponding to Photo 1. 

t = 420 N / m 5 %, D = 102 mm. 

3.2. AFM indentation of soft materials 

The material used is a polydimethylsiloxane (PDMS). No substrate effects are 

expected when nano-indenting the polymer since the thickness of the PDMS 

substrate is bigger than 1 mm. In this study, only the surface exposed at the air 

during crosslinking is considered. This means that no preferential crosslinking at the 

surface is expected when compared with crosslinking in the bulk
5
. 

One of the fundamental points to obtain reproducible, quantitative and reliable 

data is the calibration procedure, which should be rigorous and systematic for all 

measurements. This calibration procedure is fully described in the literature. In 

particular, the spring constant of the cantilever has been determined by using a 
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nondestructive method, based on the use of reference rectangular cantilevers. The 

cantilever used in this study was a triangular shaped cantilever (supplied by 

Nanosensor- Germany) and had an effective 0.30± 0.03 N/m This value is similar to 

the one determined by the thermal fluctuation measurement method. 

Moreover, the determination of the Young's modulus by a nano-indentation 

experiment assumes the knowledge of the contact area value between the indentor 

and the sample. The Figure 9 shows a scanning electron microscope (SEM) image of 

an atomic force microscopy tip (AFM) from which the radius is estimated to be 

about 46 nm in the image plane and assumed to be spherical since it is difficult to 

know the exact shape of such tips.  

The AFM force-indentation depth curves are deduced from the AFM force 

curves obtained in the quasi-static mode (the tip does not oscillate). In particular, no 

creeping effect and no plastic behaviour have been observed during the indentation 

experiments. This means that the PDMS used herein behaves like perfectly elastic 

material during the nano-indentation experiment (in considering that the indentation 

depth is about 25 nm). Moreover, the beginning of the indentation is assumed to 

correspond to the minimum of the force in the force vs. piezo displacement curve. 

Finally, dynamic mechanical tests have shown that the Young's modulus, about 

0.13 MPa, is quite independent of the deformation rate and is in the range of the 

rubbery plateau within the experimental conditions. 

 

Figure 9. SEM image showing the projection in a plane of an AFM tip 

(experimental data’s from O. Noël
5
). 

4. Young's modulus determination using the present model 

The Figure 10 shows force vs. indentation depth curves corresponding to a nano-

indentation experiment of the material described in the above section using the AFM 

tip shown in Figure 9, compared to the Hertz’s prediction and to the present model. 

The model assumes a spherical AFM tip which radius is approximately equal to 
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46 nm. The bulk modulus is assumed to be 2 GPa. It is expected that the surface 

tension of the material is in the range 0.02 N/m to 0.025 N/m. Three FEM 

computations are compared corresponding to t = 0, i.e. Hertz’s prediction, 

t = 0.0225 N/m and t = 0.03 N/m. It appears clearly that it is necessary to account for 

surface tension to retrieve the experimental data’s and obtain a reaction force in the 

expected range. 
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Figure 10. Force vs. indentation depth corresponding to AFM tip shown in  

Figure 9 (experimental data’s from O. Noël
5
). 

5. Summary 

Whenever the present model is valid, it is then possible to estimate the surface 

tension from a fit of the experimental force vs. indentation. Indeed, the exponent b is 

directly related to the surface stiffness modulus t / (r E*). For the sake of simplicity, 

the Figure 11 proposes an estimate of the b exponent in the case of quasi-

incompressible materials, using a Boltzman function: 

t

r E*
  0.2 {

0.41

b  1.09
  1}

1.15
   (3) 

For low surface stiffness moduli, typically t / (r . E*) < 0.01, the Hertz’s prediction 

prevails, i. e. b  1.5. At larger values of the surface stiffness moduli, it is necessary 

to account for surface tension, at least for low indentation depths since the present 

results correspond to  / r < 0.3. 
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Figure 11. b exponent vs. surface stiffness modulus, Boltzman Fit and numerical 

results. 

6. Discussion 

The reaction force acting on an indenter depends on its shape and size. 

Considering AFM nano-indentation, it is relatively difficult to measure and well 

define the three dimensional geometry of the AFM tip and also to be sure that the tip 

is clean. Cleanliness of the AFM tip has been regularly verified in doing force curve 

measurements on a reference wafer of silicon. Consequently, the tip is expected to be 

contaminated if the measured force after a nano-indentation experiment is different 

from the one measured on the reference silicon wafer before the nano-indentation 

experiments. However, the difference between the assumed shape and size and the 

real ones could be responsible for the significant discrepancies between several 

simulations and experiments. In order to verify this point, macroscopic indentation 

experiments are under study. 

Moreover other surface forces exists. Assuming that, for instance, only surface 

tension is acting render the material properties dependant on the mechanical model. 

The interaction between the AFM tip and the substrate, such like adhesion, can also 

influence, in addition to the surface tension of the substrate, the force vs. indentation 

depth response. However, it is relatively simple to account for these kind of surface 

forces in the FEM model once those forces are known in magnitude and direction, 

the major technical difficulty being to account for surface tension. 

Finally, the Figure 12 shows that a shift of time assumed to correspond to the 

beginning of the indentation influences significantly the slope of the force vs. 
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indentation depth curve. Hence, the deduction of the material properties from such 

experiments is not easy if this time is not well defined. 
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Figure 12. Influence of the time corresponding to beginning of the indentation on 

three force vs. indentation depth curves (experimental data’s from O. Noël
5
). 

The Figure 13 shows typical force vs. indentation curves for several AFM tip 

radii and Young's moduli in the range concerned with surface tension. Table 1 

presents the a and b material constants of eq. 2 corresponding to the fitting of the 

curves of Figure 13 in the range 0 <  < r / 4. For these experiments, the triplet 

(AFM radius tip, Young's modulus and surface tension) is known. Nevertheless, the 

deduction of the third parameter assuming the knowledge of two of them lead to a 

possible use of the model. The model accounting for elasticity and surface tension 

gives results in the right range. But the discrepancy that clearly appears indicating 

that it should be completed. The effect of adhesion should be quantified and the 

precision on the time corresponding to the beginning of indentation increased. 



Adding surface tension in the Hertz model          14 

Mesomechanics2007, 13-17th may 2007, Giens (France) 

1 10

0.1

1

10

100

 128 nm / 1.7 MPa

 128 nm / 0.2 MPa

 128 nm / 0.2 MPa

  74 nm / 0.2 MPa

  64 nm / 0.2 MPa

  46 nm / 0.13 MPa

F
 (

n
N

)

 (nm)
 

Figure 13. Typical force vs. indentation curves for several AFM tip radius and 

Young's moduli. 

 

Material 

characteristics 

Power law fit Deduced from AFM 

indentation 

r 

(nm) 

E 

(MPa) 

t 

(N / m) 

a 

(N.m
b

) 

b  rE,t 

(nm) 

Et,r 

(MPa) 

tE,r 

(N / m) 

128 1.7 0.022 3.05 

10
+3

 

1.39 155 3.7 0.019 

128 0.2 0.022 127 1.37 993 2.7 0.003 

128 0.2 0.022 11.7 1.22 180 0.49 0.016 

74 0.2 0.022 8.5 1.22 173 0.81 0.010 

64 0.2 0.022 0.98 1.15 53 0.29 0.027 

46 0.13 0.022 6.0 1.19 177 0.89 0.006 

Table 1. Deduction of the third parameter assuming the knowledge of two of the 

triplet (AFM radius tip, Young's modulus and surface tension). 

7. Conclusion 

Although the accuracy of the numerical results of the FEM proposed herein is 

expected to decrease with the rotation angle of the surface elements, it is in good 
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agreement with the precision available for experimental data at nanoscales in most 

cases. This FEM allows then to account relatively simply for surface tension in 

contact problems by using a standard finite elements free software and does not 

require the implementation of specific procedures. Nano-indentation can be a useful 

tool to measure the surface tension of rubbers or bio-material once a convenient 

mechanical model allows to consider the surface forces acting at this scale. 

Appendix 

A1. The “drum” problem 

The analytical solution for the indentation of a stretched membrane is derived 

below. The biaxial tension of the membrane is denoted t and assumed to be 

independent of the stretch induced by the indentation so that the problem remains 

purely geometrical. This practically corresponds to membranes so highly stretched 

that the small strains induced by the indentation does not change significantly the 

stress state. The indenter is assumed to be spherical, as shown in Figure A1. 1, the 

membrane is initially plane and gravity is not considered. The quasi-static 

equilibrium leads to: 

F = 2  t sin (D)    (a1. 1) 

where F is the applied force on the spherical indenter, D the distance from the axis of 

symmetry and (D) the angle between the deformed and initial state at a distance D. 

 

Figure A1. Indentation of a membrane with a sphere. 
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The radius of the spherical indenter and the contact area are denoted respectively r 

and a, as shown in Figure A1. The membrane is tangent to the sphere at the contact 

point so that: 

F = 2  t a²/r     (a1. 2a) 

 = h + h’ = r - 
 

r² - a²+ 

a

D

 
a² / r

 
 

1 - (a² / r)²

 d  (a1. 2b) 

where  denotes the indentation depth. The last integral leads to a hypergeometric 

function which tends to infinity when D tends to infinity. The relation between the 

applied force and the indentation depth cannot be simply derived from the last 

equations but an approximation for a << r is given by: 

  
F

6 t
 { ln(D) – [ln(r) – ln(

F

2  t
)]/2 }  (a1. 3) 

The Figure A1. 2. shows the comparison between the exact solution and this 

approximation. In all cases, the error is less than 12 % for  / r < 1. This Figure also 

shows that, for a given normalized indentation depth, the contact area is dependant 

on the size of the membrane. 
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Figure A2. Comparison of the exact solution given by eq. (a1. 2) approximation of 

eq. (a1. 3). 

References 



Adding surface tension in the Hertz model          17 

Mesomechanics2007, 13-17th may 2007, Giens (France) 

1. Tan S., Sherman R. L. Jr., Ford W. T., Langmuir, 2004, 20, 7015-7020. 

2. Oliver W. C., Pharr G. M., J. Mater. Res., 2004, 19, 3-20. 

3. Vanlandingham M. R., McKnight S. H., Palmese G. R., Elings J. R., Huang X., 

Bogetti T. A., Eduljee R. F., Gillespie J. W., J. Adhesion, 1997, 64, 31. 

4. Nitta K., Haga H., Kawabata K., Abe K., Sambongi T., Ultramicroscopy 2000, 82, 

223. 

5. Noël O., Ph. D. Thesis, Université de Haute Alsace (France), 2003. 

6. Fond C., Proc XVII
ème

 Congrès Français de Mécanique 2005, Troyes (France). 

7. Fisher L. R., Israelachvili J. N., Chem. Phys. Lett., 1980, 76, 325-328. 

8. Adamson A. W., Physical Chemistry of Surfaces, John Wiley & Sons Inc 1990, 

ISBN 0-471-61019-4. 

9. CAST3M : http://www-cast3m.cea.fr/cast3m/index.jsp 

10. Zienckiewicz O. C., Taylor, R. L., The Finite Element Method, McGraw-Hill 

Book Company 1989, ISBN 0-07-084174-8 (v. 1), 0-07-084175-6 (v. 2). 

11. Johnson K. L., Contact Mechanics, Cambridge University Press 1985, ISBN 0-

521-34796-3. 

http://www-cast3m.cea.fr/cast3m/index.jsp

