
INTERACTION MECANIQUE ENTRE HETEROGENEITES SPHERIQUES - ANNEXES 

 

 
1. INTRODUCTION .....................................................................................................95 
2. EXACT AXISYMMETRIC SOLUTION FOR TWO INTERACTING 

SPHERICAL INHOMOGENEITIES .........................................................................96 
3. THE EQUIVALENT INCLUSION METHOD......................................................98 

3.1. Brief review of the EIM.....................................................................................98 
3.2. Eigenstrain and stress free strain.....................................................................99 

4. QUALITY OF THE SOLUTION ............................................................................101 
4.1. Stress jump at the interface of the inhomogeneities .......................................102 
4.2. Equilibrium equations inside the inhomogeneities.........................................102 

5. ACCURACY OF THE METHOD...........................................................................103 
5.1. Comparison with results from the literature: case of cavities .......................103 
5.2. Case of glass particles in a polymer matrix.....................................................105 

6. ANALYSIS OF STRESSES FOR RUBBER INHOMOGENEITIES..................106 
7. DISCUSSION.............................................................................................................109 
8. CONCLUSIONS........................................................................................................110 
REFERENCES ..............................................................................................................110 
APPENDIX 1 : ELASTIC ENERGY...........................................................................112 
APPENDIX 2 : ELASTIC POTENTIALS..................................................................114 

 
 



INTERACTION MECANIQUE ENTRE HETEROGENEITES SPHERIQUES - ANNEXES 

A paraître dans European Journal of Mechanics 

95 

 
MECHANICAL INTERACTION BETWEEN SPHERICAL INHOMOGENEITIES: 
AN ASSESSMENT OF A METHOD BASED ON THE EQUIVALENT INCLUSION 

 
Christophe Fond1, Arnaud Riccardi2, Robert Schirrer1 and Frank Montheillet2 

 

1Institut Charles Sadron, 6, rue Boussingault F67083 Strasbourg. 
fond@ics.u-strasbg.fr  tel. (33) 3 88 41 41 68 fax (33) 3 88 41 40 99 
schirrer@ics.u-strasbg tel. (33) 3 88 41 41 36 fax (33) 3 88 41 40 99 
 
2Ecole Nationale Supérieure des Mines de St Etienne, Centre S.M.S., C.N.R.S. U.R.A. 
1884, 158 Cours Fauriel F42023 Saint-Etienne, cedex 2. 
montheil@emse.fr  tel. : (33) 4 77 42 00 26 fax : (33) 4 77 42 01 57 

 
 
Abstract: This paper assesses the ability of the Equivalent Inclusion Method (EIM) with 

third order truncated Taylor series (Moschovidis and Mura, 1975) truncated up to the third 
order to describe the stress distributions of interacting inhomogeneities. The cases considered 
are two identical spherical voids and glass or rubber inhomogeneities in an infinite elastic 
matrix. Results are compared with those obtained using spherical dipolar coordinates, which 
are assumed to be exact, and by a Finite Element Analysis. The EIM gives better results for 
voids than for inhomogeneities stiffer than the matrix. In the case of rubber inhomogeneities, 
while the EIM gives accurate values of the hydrostatic pressure inside the rubber, the stress 
concentrations are inaccurate at very small neighbouring distances for all stiffnesses. A 
parameter based on the residual stress discontinuity at the interface is proposed to evaluate the 
quality of the solution given by the EIM. Finally, for inhomogeneities stiffer than the matrix, 
the method is found to diverge for expansions in Taylor series truncated at the third order. 

 
Key words: elasticity, interaction, inhomogeneities, equivalent inclusion method, dipolar 
coordinates 

1. INTRODUCTION 
Evaluation of the mechanical interactions between inhomogeneities is a problem of interest 

for several types of material obtained by blending or phase separation. When the role of the 
second phase is the mechanical stiffening or toughening of the matrix, the volume fraction of 
inhomogeneities is generally such that the mechanical solutions obtained for a dilute second 
phase are inaccurate. Moreover, the randomness of the spatial distribution of inhomogeneities 
can play a key role in the toughening of materials (Fond et al., 1998), which makes impossible 
any elastic analysis based on a unit cell in a periodic matrix, since the latter introduces order 
into the morphology. 

In the case of polymeric amorphous matrices toughened with spherical rubber 
inhomogeneities, the hydrostatic pressure in the rubber induces cavitation and hence 
whitening (Schirrer et al., 1996; Fond et al., 1996). Although these materials exhibit good 
mechanical properties at medium strain rates, their impact properties have still to be improved 
(Béguelin, 1996). Fortunately for a mesoscopic analysis, the higher the strain rate, the more 
realistic is an elastic analysis, to the point where at high strain rates viscosity can be neglected. 
Owing to the significant increase of the yield stress of the matrix with strain rate, cavitation 



INTERACTION MECANIQUE ENTRE HETEROGENEITES SPHERIQUES - ANNEXES 

A paraître dans European Journal of Mechanics 

96 

 
occurs earlier than plasticity at high strain rates, and a description of the spatial distribution 
of the cavitated particles requires an analysis of the particle interactions (Géhant, 1999). 

In the general case, the complexity of the analysis arises from the morphology, especially in 
three dimensions, and from the non linear behaviour of the material. If the Finite Element 
Method (FEM) may be considered as the most powerful tool to analyze the mechanical fields 
associated with non linear behaviour, it is difficult to correctly mesh a representative volume 
of the composite material. The Boundary Element Method (BEM) provides an efficient 
alternative means of taking into account a number of inhomogeneities of arbitrary shape, but 
again one needs to mesh at least the surfaces in a linear elastic analysis, and also the volumes 
undergoing plasticity for elastic-plastic materials. Some techniques based on Fourier series 
can be used to describe a periodic morphology (Suquet, 1990; Moulinec and Suquet, 1998), 
but it is still necessary to mesh the volume. Thus, as our analysis deals only with spherical 
inhomogeneities, we chose to use the EIM. The accuracy of the FEM and EIM was evaluated 
by comparing their approximate solutions to those obtained using spherical dipolar 
coordinates and the formulation of isotropic elasticity problems (Papkovitch, 1932; Neuber, 
1957). Since the latter results could be determined with any desired accuracy, they were 
considered to be "exact" solutions. 

The aim of the present work was to compare various methods of calculating the stress 
concentrations associated with interacting inhomogeneities and the hydrostatic stresses in 
rubber inhomogeneities. In rubber toughened polymers, there is a large mechanical contrast 
between the shear moduli of the matrix and the rubber, typically µ0 / µp = 103, while the ratio 
of the bulk moduli is typically Κ0 / Κp = 2. Hence a rubber inhomogeneity behaves practically 
like a compressible fluid zone (Eshelby, 1957, 1959). This leads to low levels of transmitted 
tangential stress at the interface and the hydrostatic pressure is then directly related to the 
volume change of the inhomogeneity. Rubber toughened polymers are known to undergo both 
damage and plasticity during deformation, the relative importance of the two processes 
depending on strain rate (Schirrer et al., 1996; Fond et al., 1996). Cavitation generally occurs 
in the pseudo elastic range of loading and is directly related to the hydrostatic pressure in the 
rubber, while plasticity and crazing are associated with the stress concentrations. 

After justifying the choice of analytical methods, this paper reviews a method based on 
dipolar coordinates which gives exact solutions, subsequently used as reference solutions. The 
EIM is then briefly presented and an original "error level indicator" is proposed to estimate the 
quality of its solutions. In section 5 the accuracy of the method is assessed for two interacting 
cavities and for two interacting particles stiffer than the matrix. Section 6 presents an analysis 
of stresses for the particular case of rubber inhomogeneities in a polymer matrix. Finally, in 
sections 7 and 8 the results are discussed and some conclusions are drawn relating to the EIM. 

2. EXACT AXISYMMETRIC SOLUTION FOR TWO INTERACTING SPHERICAL 
INHOMOGENEITIES 

In the formulation of isotropic elasticity problems (Papkovitch, 1932; Neuber, 1944), the 
axisymmetric displacements are expressed as functions of two harmonic potentials ϕ and ψ: 

[ ] ( ) ( )[ ]ψνψϕµ −−+= 14,0,0,,2 zgraduuu zyx     (1) 

where ∆ϕ = ∆ψ = 0 and µ and ν are the shear modulus and Poisson ratio in each medium. The 
above equation is usually written in cartesian coordinates, but here it is more natural to 
employ spherical dipolar coordinates (α, β, γ) defined by: 
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where h(α, β) = cosh α − cos β and γ is the angle of revolution. Figure (1) shows the traces 
of the α = const and β = const surfaces in a meridian plane (γ = const). The spherical 
interfaces of the two (identical) inhomogeneities correspond to α α = ± 1 , the poles P1 and P2 
are singular points (α = ±∞) for the spherical dipolar coordinate system, and α and β are 
equal to zero at infinity. 
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Figure 1. Spherical dipolar coordinate system in a meridian plane const=γ , with two 
identical inhomogeneities corresponding to 1αα ±= . 

The solution of Laplace's equation in these coordinates is known and the potentials (ϕ, ψ) 
may be expressed in terms of Legendre series: 

( ) ( ) ( ) ( )ϕ α β α β α β, , cos=
=

+∞

�h A C Pn n n
n 0

 and ( ) ( ) ( ) ( )ψ α β α β α β, , cos=
=

+∞

�h B S Pn n n
n 0

 (3) 

In the above equations, Pn(cos β) are the polynomial Legendre functions and the unknown 
coefficients A n  and B n  are associated with the two media ( A n 

i , B n 
i  for the inclusions and 

A n 
m , B n 

m  for the matrix). ( ) ( ) C cosh n 1 / 2 n α α = +  and ( ) e / 2 n 1 / 2 − + α  and 

( ) ( ) S sinh n 1 / 2 n α α = +  and ( ) − − + e / 2 n 1 / 2 α  within the matrix and inclusions, respectively. 
Hence the displacements and stress fields associated with the potentials (ϕ, ψ) and given in 
spherical dipolar coordinates (Sternberg and Sadowsky, 1952) are valid in the matrix and may 
also be used in the inclusions by splitting the hyperbolic cosine and sine functions and 
conserving only the terms involving ( ) e n 1 / 2 − + α . 

Since the problem is symmetric with respect to the two (identical) inclusions, only the 
boundary conditions at one of the two inclusion-matrix interfaces, e.g.,α α = − 1 , need be 
considered. After defining the continuity of displacements and tractions at this interface, 
assumed to be perfect, using the orthogonality properties of Legendre's polynomials 
(Sternberg and Sadowsky, 1952), the boundary conditions are transformed into an infinite 
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system of linear equations, which is then truncated and inversed numerically to obtain the 
unknown coefficients A n 

i , B n 
i  and A n 

m , B n 
m . 

The truncation order N of the infinite series (3) is determined by the condition that a 
change from N to N+1 causes a change in the final numerical values of less than the desired 
error margin and in the present work the convergence of the process was always checked 
numerically for N ≤ 90. In order to extend the initial approach of Sternberg and Sadowsky to 
the case of two interacting spherical inhomogeneities, this method can alternatively be applied 
to the classical approach of Chen and Acrivos (1978). Although restricted to two 
inhomogeneities, this would indeed appear to be more convenient, since the use of spherical 
dipolar coordinates avoids introducing translation operations of the harmonic potentials (ϕ, 
ψ). 

3. THE EQUIVALENT INCLUSION METHOD 

3.1. BRIEF REVIEW OF THE EIM 

In the case of inhomogeneities of ellipsoidal shape, analytical solutions are available from 
the mathematical developments of Ferrers (1877) and Dyson (1891). Using these results and 
the Eshelby-Kröner static inclusion formalism, Eshelby (1957) found the exact solution for a 
linear elastic inhomogeneity embedded in an infinite linear elastic matrix and showed that the 
stress free strain inside the equivalent inclusion is here homogeneous. Sabar et al. (1991) 
employed the same formalism to take into account a phase transformation or the occurrence of 
plasticity inside the inclusion in the case of a moving boundary. Wu and Nakagaki (1997) 
recently proposed an elastoplastic model based on Eshelby's inclusion, where the stress 
inhomogeneities were assumed to follow a normal distribution. Cherkaoui et al. (1995) also 
used this formalism for "core and shell" ellipsoids. In linear elastic problems, Moschovidis 
and Mura (1975) went further than Eshelby (1959) by proposing the use of Taylor series to 
describe the stress free strain, in order to calculate approximate solutions for interacting 
inhomogeneities. 

Recently, Hort and Johnson (1994) successfully applied the EIM to metallic precipitates 
having elastic moduli slightly different from those of the matrix. The number of effectively 
interacting neighbouring spheres was shown to be small and various first order solutions were 
discussed for the number of neighbouring interacting particles. Rodin and Hwang (1991) 
proposed a hybrid method coupling the EIM and FEM and involving second order Taylor 
series, in order to obtain more accurate results than with the EIM for less CPU time. The aim 
of these authors was to estimate the effective elastic moduli of materials containing spherical 
inhomogeneities. Due to the nature of the FEM, the simulated materials were partly ordered, 
being comprised of cubes containing spheres of different radii. The potential energy release 
given by the EIM was found to be very close to that given by the FEM for two strongly 
interacting cavities. 

The EIM leads to a reduced number of unknowns for inclusion problems, depending on the 
order of the Taylor series. Thus, once some integrals have been analytically computed for a 
given geometry of inclusion, the latter may be treated as a three dimensional "element" for 
which no volume or surface discretization is necessary. This is the fundamental difference as 
compared to the FEM or the BEM. However, the analytical solution requires efficient 
computers due to the cumbersome number of terms in the functions, even for relatively low 
order expansion of the Taylor series. This is one reason why the method has rarely been used 
for random distributions of inclusions and Taylor series of at least second order. Another 
reason is that no mathematical proof of the convergence of the EIM has yet been given. In this 
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paper, we propose two dimensionless physically meaningful indicators to evaluate the quality 
of the solutions and hence test the convergence of the EIM. 

Whereas alternative methods are preferable to calculate accurate stress concentration 
factors for a reduced number of inhomogeneities, typically two (Sternberg and Sadowsky, 
1952; Matsuo and Noda, 1997), or for specific problems involving inhomogeneities, for 
instance the load transfer between rigid spherical inclusions (Phang-Thien and Kim, 1994), 
the EIM appears to represent a good compromise between accuracy and the spatial 
distribution of inhomogeneities necessary to describe duplex materials. Many of these 
materials including rubber toughened polymers contain quasi-spherical inhomogeneities, 
while for a spherical inclusion the elliptical integrals become analytic functions. Since our 
present interest was focused on amorphous materials, the EIM was applied to isotropic linear 
elastic materials and used to obtain approximate solutions involving Taylor series up to the 
third order. 

3.2. EIGENSTRAIN AND STRESS FREE STRAIN 

An inclusion is a domain of the matrix which is subjected to a stress free strain, in other 
words, a thermal dilatation, plastic strain or phase transformation strain which would not 
induce any stress in the inclusion if it were not embedded in a matrix. An inhomogeneity is a 
domain with elastic constants different from those of the matrix. Stresses arise from 
incompatibility of the deformation between the inclusion and the surrounding matrix, 
assuming perfect adhesion at the inclusion-matrix interface. An eigenstrain is a strain induced 
by a stress free strain in an inclusion (Mura, 1993). 

The EIM has been described in detail elsewhere (Moschovidis and Mura, 1975; Mura, 
1993) and only a brief summary will be given below. The present notation differs slightly 
from that of other papers: bold characters denote tensors and vectors and italics exact 
functions, while for the sake of clarity, the stress free strain tensors BBBBp take values in the pth 
inclusion and are zero outside. The general equivalence equation is then: 

Cp(x)(εεεε0000(x) + �
q = 1

N
  DDDDq(x − xq) BBBBq(x)) = C0(εεεε0000(x) + �

q = 1

N
  DDDDq(x − xq) BBBBq − BBBBp(x))  (4) 

for every point x = (x, y, z) inside an inhomogeneity (left hand side) or inclusion (right hand 
side), where N is the number of inclusions and xq = (xq, yq, zq) the centre of the qth inclusion. 
DDDDp is a fourth order tensor representing the eigenstrains, which are the effects of BBBBp on the 
strains at point x. εεεε0000(x) denotes the remote strain tensor, the strain which would prevail in the 
absence of an inhomogeneity. Cp et C0 are the compliance tensors of the pth inhomogeneity 
and the matrix, respectively, and for our purposes Cp is assumed to be uniform in the 
inhomogeneities. 

In order to use analytical solutions, the stress free strain B
p
 

j  is approximated by a Taylor 
series, which for numerical calculations must be truncated to the order T. The subscript j 
refers to the component of the strain tensor, using the reduced indices (11 → 1, 22 → 2, 33 → 3, 23 → 

4, 13 → 5, 12 → 6). This leads us to define the stress free strain tensors ββββ
p
(a, b, c) 
 

    as follows: 

B
p
(x)
j

 ≈ �
a, b, c

0 ≤ a+b+c ≤ T
         β

p
(a, b, c)
j

 (x − xp)
a
 
 
 (y − yp)

b
 
 
(z − zp)

c
 
 
   (5) 
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where a, b and c are positive integers or zero such that 0 ≤ a + b + c ≤ T. The remote strain is 
approximated in the same way by a Taylor series and it should be noted that the remote strain 

field εεεε0000 can be non uniform: 

ε
0p
(x)
j

 ≈ �
a, b, c

0 ≤ a+b+c ≤ T
         ε

0p
(a, b, c)
j

(x − xp)
a
 
 
 (y − yp)

b
 
 
(z − zp)

c
 
 
   (6) 

The equivalence equation may then be rewritten: 

�
a', b', c'

0 ≤ a'+b'+c' ≤ T
         Cp(x)[εεεε

0000p
(a, b, c)
 

(x) + �
q = 1

N
  DDDD

q
(a', b', c')
 

(x − xq) ββββ
q
(a', b', c')
 

] 

 ≈ �
a', b', c'

0 ≤ a'+b'+c' ≤ T
         C0[εεεε

0000p
(a, b, c)
 

(x) + �
q = 1

N
  DDDD

q
(a', b', c')
 

(x − xq) ββββ
q
(a', b', c')
 

 − ββββ
p
(a, b, c)
 

(x)] 
 (7) 

for all (a, b, c). The tensors DDDD
q
(a', b', c')
 

 are analytically known. For instance, considering a 

stress free strain β1(1, 0, 2) = 1 (B1 = x z2 and Bi = 0 for i ≠ 1), where the origin of the 
coordinates lies at the centre of the spherical inclusion shown in Figure 2(a), the solution can 
be derived analytically (Ferrers, 1877; Dyson, 1891; Eshelby, 1959; Moschovidis and Mura, 
1975). The corresponding deformed shape is shown in Figure 2(b) and the material outside the 
inclusion is obviously not stress free. 

(a)   (b) 
Figure 2. Spherical inclusion (a) subjected to a stress free strain of density xz2 in a matrix of 

Poisson's ratio 0.25, and the deformed state (b) (magnification = 5). The level of shading 
corresponds to the amplitude of the von Mises equivalent stress at the interface. 

However, as eq. (7) cannot generally be solved analytically, DDDD
q
(a', b', c')
 

 must also be 

approximated by a Taylor series in order to obtain a linear system of equations. This leads us 

to define the fourth order tensor D
pq
(a, b, c, a', b', c')
jk

 as follows: 

D
pq
(a, b, c, a', b', c')
jk

 β
q
(a', b', c')
k

 ≈ 
1

a! b! c!
∂a

∂xa 
∂b

∂yb 
∂c

∂zc D
q
 
jk

(x − xq)
 
 
 xp

 β
q
(a', b', c')
k

  (8) 

Whereas all strain functions give the exact solution for a single inclusion in an infinite 
medium, the problem of interacting inhomogeneities leads to approximate solutions because 

the strains induced by a β
p
(a, b, c)
j

 distribution cannot be exactly expressed by a Taylor series 
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with a finite T value at every point. Therefore, the equality between the stress inside an 
inhomogeneity p and that inside the corresponding equivalent inclusion, which induces an 

eigenstrain, is rewritten in the form: 

�
j = 1

6
 C

p
 
ij
( ε

0p
 (a, b, c)
j

 + �
k = 1

6
  �

q = 1

N
 �

a', b', c'

0 ≤ a'+b'+c' ≤ T
         D

pq
(a, b, c, a', b', c')
jk

 β
q
(a', b', c')
k

) = 

�
j = 1

6
 C

0
 
ij
( ε

0p
(a, b, c)
j

 + �
k = 1

6
  �

q = 1

N
 �

a', b', c'

0 ≤ a'+b'+c' ≤ T
         D

pq
(a, b, c, a', b', c')
jk

 β
q
(a', b', c')
k

 − β
p
(a, b, c)
j

) 
 (9) 

for all (a, b, c) and for every i and p. The compliance tensors are assumed to be uniform. At 
this stage, it should be noted that the left hand side of eq. (7), the heterogeneous problem, 
involves non equilibrated stress fields, while the right hand side, the homogeneous equivalent 
problem, deals with equilibrated stress fields. The right hand side of this equation is in fact the 
sum of exact solutions for the inclusion problem. Since Cp ≠ C0, the left hand side generally 
involves non equilibrated stress fields due to the normal stress discontinuities at the interface 
and non zero body forces which remain for truncated Taylor series. Considering now eq. (9), 
the left hand side concerns non equilibrated stress fields for the same two reasons, while on 
the right hand side the estimation of DDDD by truncated Taylor series also mostly leads to non 
equilibrated stress fields. The exact solution is obtained when the stress field on the left hand 
side is equilibrated. 

If a uniform strain field is applied at infinity, ε
0p
(a, b, c)
j

 vanishes whenever a + b + c ≠ 0. A 

linear system allowing estimation of the β
p
(a, b, c)
j

, the initial unknowns of the mechanical 

interaction problem, is obtained by identifying terms of the same order in eq. (9). Since the 
Taylor series must be truncated, eq. (9) gives an approximate solution, which is expected to 
increase in quality with inclusion of higher order terms (see section 5). The number of 
unknowns per inhomogeneity is 6 for a truncation order T of zero, 24 for T = 1, 60 for T = 2, 
120 for T = 3, ... 

The present evaluation was limited to isotropic materials, where the Cij depend only on the 
shear and bulk moduli. In the particular case of cavities (µ = K = 0), eq. (9) has no single 
solution due to the vanishing right hand term and therefore leads to impotent eigenstrains. It is 
nevertheless possible to derive specific equations for cavities (Mura, 1993). A simple way of 
avoiding numerical problems without restricting the potential of our software was adopted 
here: the elastic constants of the cavities were set to 10−6 times those of the matrix. 
Computing with double precision reals makes the error introduced by this simplification 
negligible compared to that resulting from truncation of the Taylor series. 

4. QUALITY OF THE SOLUTION 
The solution given by the equivalence equation (9) is kinetically admissible, accounts for 

the behaviour of the material and fulfils the boundary conditions, but it is not statically 
admissible for the following reasons. A polynomial stress free strain of degree N induces a 
polynomial eigenstrain of the same degree inside an inclusion (Mura, 1993). Therefore, any 
polynomial applied strain can be exactly counterbalanced by polynomial eigenstrains in the 
equivalence equation. In contrast, the eigenstrains outside the inclusion, which vanish at 
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 infinity, involve functions of the type xa
  y

b
  zc

  (
2

x2 + y2 + z2)
n
 where n ≤ −(a + b + c + 3), and 

such terms cannot be exactly counterbalanced by a truncated Taylor series. These "external" 
strains act as applied strains arising from the surrounding interacting inhomogeneities. Two 
quantities based on the amplitude of the stress discontinuities and of the self induced body 
forces, calculated from the left hand side of eq. (7), will be proposed here to assess the quality 
of the solution. 

4.1. STRESS JUMP AT THE INTERFACE OF THE INHOMOGENEITIES 

The strain field induced by a stress free strain β
p
(a, b, c)
j

 in a domain Ωp is continuous 

across the interface with another domain Ωq. The approximate solution follows the stress 
gradients as well as possible by means of terms varying with a Taylor expansion around the 
centre rq of Ωq, i. e., a sum of terms xa' yb' zc'. Although all terms are then correctly 

counterbalanced at the centre of an inhomogeneity, stress discontinuities σ
dis
 
i

 are expected to 

appear at the interface: 

σ
dis
 
i

 = σ
+
 
i
 − σ

−
 
i
       (10) 

where σσσσ
+
 
i
 and σσσσ

−
 
i
 denote the components of the stress tensor at the external and internal faces 

respectively, corresponding to the left hand side of eq.(7). These discontinuities clearly 
increase as the distances between inhomogeneities decrease and as the difference between the 
material elastic constants (Cp − C) increases. Therefore, a quantity Jq derived from the stress 
discontinuities provides an estimate of the quality of the approximate solution. At the 
interface of a given inhomogeneity q, we propose to use a positive mean value based on the 

amplitude of the stress discontinuity. Since σ
dis
 
i

 increases with C
p
 
ij
 − C

0
 
ij
, the displacement 

vector is employed as a normalization weight. Denoting by uq the displacement vector at the 
centre of the inhomogeneity q of radius aq, Jq is defined by: 

Jq = 
3

 4 π aq
3 (εεεε0:σσσσ0)

 ��

Sq

 
  (σσσσdis.n) . (u − uq)  ds     (11) 

where n is the normal vector outward the interface and Sq is the surface of Ωq. Jq is a 
dimensionless quantity, which is always positive and zero for the exact solution. 

4.2. EQUILIBRIUM EQUATIONS INSIDE THE INHOMOGENEITIES 

Outside the inclusions, as the elastic field is the sum of exact solutions and the remote 
field, the equilibrium equations are automatically satisfied for the right hand side of eq. (7). 
Using truncated series, the equilibrium equations inside an inhomogeneity give: 

div { �
a', b', c'

0 ≤ a'+b'+c' ≤ T
         Cp(εεεε

0000p
(a, b, c)
 

(x) + �
q = 1

N
  DDDD

q
(a', b', c')
 

(x) BBBB
q
(a', b', c')
 

(x))} 
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 ≈ div { �
a', b', c'

0 ≤ a'+b'+c' ≤ T
         C0(εεεε

0000p
(a, b, c)
 

(x) + �
q = 1

N
  DDDD

q
(a', b', c')
 

(x) BBBB
q
(a', b', c')
 

(x) − BBBB
p
(a, b, c)
 

(x))} 

 = 0    (12) 

where the last term, a superposition of analytical solutions, is still zero. In fact, the fields 
arising from other inhomogeneities or from the inhomogeneity in question are free of body 
force. The parasitic body forces may be expected to tend to zero as the maximum order T of 
the Taylor series increases. Assuming that the strain applied at infinity is exactly described by 
a finite and small number of terms (< T), so that as in section 4.1 only the strain induced by 
the presence of neighbouring inhomogeneities must be described by an infinite number of 
terms, the parasitic body forces are expected to be proportional to the derivative of DDDDq BBBBq. 
Consequently, it remains to estimate the order of magnitude of the residual parasitic body 
forces fi. In order to avoid a time consuming volume integration, the resultant F of f over the 
domain Ωq is integrated over the internal surface Sq of the interface.  F  / Sq is expected to 
vary with the magnitude of σσσσdis. F increases with the coefficients of the stiffness tensor of the 
inhomogeneity and its amplitude may be used to estimate the quality of the solution. 
Nevertheless, due to the symmetric and antisymmetric nature of the strain distributions, some 
parasitic body forces can be hidden in cases of perfect symmetry. In such cases, one needs to 
integrate the resulting forces over six half spheres defined by the three planes (x = 0, y = 0, 
z = 0), but this is more time consuming. Since future applications will generally involve a 
random spatial distribution of inhomogeneities, we therefore propose a dimensionless quantity 
Lq as a measure of the level of accuracy to which the equilibrium equations are fulfilled within 
the domain Ωq. Lq is obtained in the same manner as Jq by integrating eq. (12) over the 
surface Sq. Once again, a displacement vector related to Cp − C0000 is used as a normalization 
weight for f. Lq is then defined by: 

Lq = 
3

 4 π aq
3 (εεεε0:σσσσ0)

  ��

Sq

 
 (σσσσ− .n) ds  . ��

Sq

 
  (u − uq) ds    (13) 

where the value of σ− inside Ωq may be calculated from the left hand side of eq. (7), using the 
solution obtained by solving eq. (9). Lq is obviously zero for cavities and this is also true for 
isotropic materials containing inhomogeneities with the same Poisson's ratio as the matrix. In 
the case of rubber like inhomogeneities, which behave approximately as a compressible fluid, 
Lq is likewise expected to be small. 

5. ACCURACY OF THE METHOD 

5.1. COMPARISON WITH RESULTS FROM THE LITERATURE: CASE OF CAVITIES 

There exist only a few analytical reports relative to mechanical interactions between 
several spherical elastic inhomogeneities. The accuracy of the EIM, for a given truncation 
order T, may be expected to decay as the difference between the material constants of the 



INTERACTION MECANIQUE ENTRE HETEROGENEITES SPHERIQUES - ANNEXES 

A paraître dans European Journal of Mechanics 

104 

 
inhomogeneities and the matrix increases. We consider here the case of two interacting 
identical spherical cavities of radius a (Rodin and Hwang, 1991; Sternberg and Sadowsky, 

1952; Riccardi, 1998) under triaxial or uniaxial tension. Table I shows the ability of the EIM 
to estimate the stress concentration factors for remote equal triaxial tension. At separation 
distances d (Fig. 3) of less than 2.25 a, the errors in these factors are −12% and −19% for the 
third and second order computations, respectively. High stress gradients are in fact not 
correctly described in such cases, even by third order polynomials. In regions where no severe 
stress concentrations occur, the stresses are however correctly predicted, while the overall 
tendency of the EIM is to smooth the stress field. Table II gives results for uniaxial tension. 
Here it can be seen that the EIM tends to minimize the stress concentrations at all points on 
the interface, despite a good estimation at point A. As expected, the quality indicator Jq 
diminishes with increasing last order term T of the Taylor series and with decreasing stress 
concentration. Figure 4 shows the dependence of Jq on d / a for uniaxial and triaxial tension, 
the intersections of the curves for d / a < 2.01 being undoubtedly due to numerical integration. 
The quantity Lq (eq. 13) has no meaning for cavities. Finally, the EIM provides a good 
estimate (Appendix 1) of the energy release (Table III), which represents a mean value over 
the domain Ωq. 

 
d / a σxx at point A σxx at point B σzz at point C 

 {exact} 
F.E.M.1 

(F.E.M.2) 

Present analysis 
(order m) 

{exact} 
F.E.M.1 

Present 
analysis 

(order m) 

{exact} 
F.E.M.1 

Present 
analysis 

(order m) 
2.010 {7.51} 

7.51 
(7.36) 

2.997 (3) 
2.787 (2) 
2.523 (1) 
2.212 (0) 

{1.54} 
1.54 

1.462 (3) 
1.628 (2) 
1.444 (1) 
1.634 (0) 

{1.43} 
1.43 

 

1.393 (3) 
1.411 (2) 
1.356 (1) 
1.332 (0) 

2.100 {3.16} 
3.15 

(3.10) 

2.545 (3) 
2.421 (2) 
2.253 (1) 
2.039 (0) 

{1.54} 
1.53 

1.483 (3) 
1.607 (2) 
1.456 (1) 
1.620 (0) 

{1.43} 
1.43 

 

1.410 (3) 
1.421 (2) 
1.366 (1) 
1.347 (0) 

2.250 {2.35} 
2.34 

(2.30) 

2.177 (3) 
2.106 (2) 
2.002 (1) 
1.865 (0) 

{1.53} 
1.53 

1.499 (3) 
1.583 (2) 
1.470 (1) 
1.600 (0) 

{1.43} 
1.44 

 

1.423 (3) 
1.432 (2) 
1.382 (1) 
1.369 (0) 

3.000 {1.71} 
1.71 

(1.73) 

1.695 (3) 
1.677 (2) 
1.646 (1) 
1.601 (0) 

{1.52} 
1.51 

1.513 (3) 
1.532 (2) 
1.499 (1) 
1.546 (0) 

{1.45} 
1.46 

 

1.456 (3) 
1.456 (2) 
1.436 (1) 
1.433 (0) 

∞ − 1.500 − 1.500 − 1.500 
Table I. Two interacting cavities (Fig. 3). Comparison of the stress concentration factors at 

points A, B and C estimated by the EIM (present analysis) and the FEM (F.E.M.1 and 
according to Rodin and Hwang (1991) F.E.M.2 in brackets) with the exact solution (Riccardi, 

1998), for remote equal triaxial tension σxx = σyy = σzz = 1, µ0 / K0 = 0.6. 

All results were compared with the predictions of an elastic finite element analysis in order 
to check the validity of a finite element mesh for further elastic plastic calculations. The 
software CASTEM2000 allows automatic meshing of predefined surfaces and the 
computations involve axisymmetric irregular meshes. In cavity problems, the matrix consists 
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of eight node quadrilateral elements and the dimensions of the domain are 6a x 8a in all 
cases. The boundaries remain straight and parallel while boundary displacements are 

imposed such that the mean strain corresponds to εεεε0. Since the solutions were compared to 
those for an infinite medium, the "remote" stress field was evaluated at the boundaries and the 
mean values between displacement and stress boundary conditions were used to normalize the 
results. Comparison with data from analytical calculations (Riccardi, 1998) and another recent 
FEM calculation (Rodin and Hwang, 1991) confirmed the validity of the mesh for all 
separation distances and justified its use for other kinds of inhomogeneities. 

 
d / a σxx at point A σxx at point B σzz at point C 

 {exact} 
F.E.M.1 

(F.E.M.2) 

Present 
analysis 

(order m) 

{exact} 
F.E.M.1 

Present 
analysis 

(order m) 

{exact} 
F.E.M.1 

Present 
analysis 

(order m)
2.010 {-0.778} 

-0.761 
(-0.812) 

-0.1514 (3) 
-0.1723 (2) 
-0.3987 (1) 
-0.8256 (0) 

{-0.564} 
-0.559 

 

-0.5413 (3) 
-0.5225 (2) 
-0.6925 (1) 
-0.4168 (0) 

{1.85} 
1.85 

 

1.895 (3)
1.902 (2)
1.725 (1)
1.681 (0) 

2.100 {-0.310} 
0.302 

(-0.320) 

-0.1478 (3) 
-0.1824 (2) 
-0.3540 (1) 
-0.6640 (0) 

{-0.564} 
-0.561 

 

-0.5574 (3) 
-0.5168 (2) 
-0.6836 (1) 
-0.4292 (0) 

{1.86} 
1.86 

 

1.903 (3)
1.910 (2)
1.740 (1)
1.703 (0) 

2.250 {-0.208} 
-0.203 

(-0.214) 

-0.1382 (3) 
-0.1859 (2) 
-0.3201 (1) 
-0.5380 (0) 

{-0.564} 
-0.562 

 

-0.5728 (3) 
-0.5152 (2) 
-0.6682 (1) 
-0.4482 (0) 

{1.87} 
1.87 

 

1.912 (3)
1.918 (2)
1.765(1)
1.737 (0) 

3.000 {-0.288} 
-0.284 

(-0.319) 

-0.3079 (3) 
-0.3408 (2) 
-0.4047 (1) 
-0.4962 (0) 

{-0.568} 
-0.565 

 

-0.5782 (3) 
-0.5448 (2) 
-0.6120 (1) 
-0.5132 (0) 

{1.91} 
1.92 

 

1.930 (3)
1.931 (2)
1.866 (1)
1.860 (0) 

∞ − -0.587 − -0.587 − 2.022 
Table II. Two interacting cavities (Fig. 3). Comparison of the stress concentration factors at 

points A, B and C estimated by the EIM (present analysis) and the FEM (F.E.M.1 and 
according to Rodin and Hwang (1991) F.E.M.2 in brackets) with the exact solution (Riccardi, 

1998), for remote uniaxial tension σzz = 1, µ0 / K0 = 0.6. 

5.2. CASE OF GLASS PARTICLES IN A POLYMER MATRIX 

The case of glass particles in an amorphous polymer matrix leads to morphologies similar 
to those of rubber toughened polymers. The ratio of the Young moduli of glass and polymer is 
25, the Poisson ratios are respectively 0.23 and 0.4, and an analysis of the stresses for two 
interacting glass inhomogeneities is shown in Figure 5. It is seen that the EIM does not reach 
convergence, at least when the expansions are limited to an order of less than 4 and for a 
separation distance of less than 0.2 times the radius of the inhomogeneities. Jq values clearly 
indicate that a strong stress discontinuity arises at the interface as the inhomogeneities are 
located closer to one another. Lq values, related to the global equilibrium of an inhomogeneity, 
also indicate non convergence before the fourth order. The difference between the Poisson 
ratios leads to high values of Lq for zero order computations due to superposition of the fields 
attached to the outside of an inhomogeneity, which are in equilibrium only for a Poisson ratio 
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equal to that of the matrix. Other calculations not presented here revealed that the harder the 
inhomogeneities, the poorer are the results given by the EIM. 

 Triaxial tension σxx = σyy = σzz = 1 Uniaxial tension σzz = 1 
d / a F.E.M. Analytical Present analysis, 

third order   (Jq) 
F.E.M. Analytical Present analysis, 

third order  (Jq) 
2.001 -7.20 -7.17 -7.269 (1.14 10-1) -3.51 -3.36 -3.478 (5.03 10-2)
2.010 -7.20 -7.17 -7.262 (1.08 10-1) -3.52 -3.36 -3.482 (4.91 10-2)
2.050 -7.20 -7.16 -7.237 (8.57 10-2) -3.55 -3.38 -3.500 (4.49 10-2)
2.100 -7.17 -7.16 -7.211 (6.51 10-2) -3.58 -3.41 -3.522 (4.16 10-2)
2.250 -7.13 -7.12 -7.158 (3.08 10-2) -3.65 -3.50 -3.585 (3.97 10-2)
2.500 -7.09 -7.10 -7.113 (1.21 10-2) -3.75 ? -3.77 ? -3.679 (3.48 10-2)
3.000 -7.07 -7.08 -7.082 (4.23 10-3) -3.91 -3.82 -3.834 (1.89 10-2)
4.000 -7.07 - -7.070 (7.20 10-4) - - -4.015 (3.81 10-3)

∞ -7.07 -7.07 -7.069 (0) -4.20 -4.20 -4.200 (0) 
Table III. Two interacting cavities (Fig. 3). Potential energy release per inhomogeneity for 
remote uniaxial or equal triaxial tension, µ0 / K0 = 0.6. Comparison of results given by the 

EIM (third order) and the FEM (Rodin and Hwang, 1991) with the analytical solution. 

 
1E-3 0.01 0.1 10.00

0.05
0.10
0.15
0.20
0.25
0.30
0.35              tensions

triaxial               uniaxial

 Oth order    

 1st order     

 2nd order     

 3rd order     

J q

(d - a) / a  

Figure 3. Two interacting spherical 
inhomogeneities in an infinite matrix. 
Positions of the points A, B and C at 
which the stress concentrations are 
computed, with the line AB defining 
the z-axis. 

Figure 4. Stress discontinuities Jq for two 
interacting spherical cavities in an elastic matrix 
of Poisson's ratio 0.25 under remote triaxial or 
uniaxial tension. 

6. ANALYSIS OF STRESSES FOR RUBBER INHOMOGENEITIES 
The whitening of many polymeric materials is due to cavitation in a rubber phase, which is 

directly related to the magnitude of the positive (tensile) hydrostatic stress inside the rubber. 
Cavitation has a low energy consumption but plays the key role of initiating void growth and 
the subsequent plastic deformation and volume change. This process is relevant to the rubber 
toughening of amorphous materials such as polymethylmethacrylate (PMMA) and polystyrene 
(PS). Crack tip stress fields are associated with tensile states intermediate between triaxial and 
biaxial tension (plane strain or stress), depending on the thickness of the sample, whereas the 
classical tensile tests concern uniaxial tension. The following section examines the stress 
concentrations and hydrostatic stress for two interacting rubber inhomogeneities with 
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axisymmetric geometry (Fig. 3), under triaxial, biaxial or uniaxial tension (Figs. 6, 7 and 8). 
The hydrostatic stress is well estimated by the EIM in all cases. Differences between the 

hydrostatic stress calculated at the centre of a rubber inhomogeneity and the mean hydrostatic 
stress calculated at the interface are always less than 0.17 %. A slight discrepancy for the FEM 
at large values of the interparticle distance d / a is undoubtedly due to the finite nature of the 
volume for this analysis, and in these cases the results of the EIM may in fact be considered to 
be more accurate than those of the FEM. The hydrostatic stress is more sensitive to the 
particle interaction under biaxial or uniaxial tension than under triaxial tension, while as 
expected a shielding effect is present for uniaxial tension (Fig. 8). The maximal von Mises 
stress concentrations (σe) are plotted with respect to the interparticle distance in Figure 9. In 
the case of triaxial tension, the maximum is always located at point A. The maximum for 
biaxial tension ranges from about point C to point A for values of d / a smaller than 
approximately 2.1, while for uniaxial tension this maximum lies at approximately point C for 
all values of d / a. 
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Figure 5. Two interacting glass inhomogeneities in a polymer matrix (Fig. 3). Comparison of 
the stress concentration factors at points A and C estimated by the EIM and the FEM with the 

exact solution (Riccardi, 1998), for remote uniaxial tension σzz = 1, µ0 / K0 = 0.2142, 
µp / K0 = 6.097, Kp / K0 = 9.257. 
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Figure 6. Two interacting rubber inhomogeneities in a polymer matrix (Fig. 3). Comparison 
of the stress concentration factors at points A and C and the hydrostatic stress in the rubber, 
σh, estimated by the EIM and the FEM with the exact solution (Riccardi, 1998), for remote 

equal triaxial tension σxx = σyy = σzz = 1, µ0 / K0 = 0.2142, µp / K0 = 2.097 10−4, Kp / K0 = 0.6. 
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Figure 7. Two interacting rubber inhomogeneities in a polymer matrix (Fig. 3). Comparison 
of the stress concentration factors at points A and C and the hydrostatic stress in the rubber, 
σh, estimated by the EIM and the FEM with the exact solution (Riccardi, 1998), for remote 
equal biaxial tension σxx = σyy  = 1, µ0 / K0 = 0.2142, µp / K0 = 2.097 10−4, Kp / K0 = 0.6. 

As in the case of stiff inhomogeneities, it is possible to find specific geometrical 
configurations for which convergence does not occur, at least before the fourth order. 
Considering the simple case of three identical rubber inhomogeneities located at the vertices 
of an equilateral triangle, in a plane inclined by 45° with respect to the axis of uniaxial tension 
and at a separation distance d = 0.1 *a, the Jq values increase by approximately 40 % at each 
successive order of expansion. This example illustrates the non systematic convergence of the 
EIM before the fourth order of Taylor series. Nevertheless, the level of hydrostatic stress does 
not vary significantly in this case with the order of expansion, only by less than 6.5 %. 
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Figure 8. Two interacting rubber inhomogeneities in a polymer matrix (Fig. 3). Comparison 
of the stress concentration factors at points A and C and the hydrostatic stress in the rubber, 
σh, estimated by the EIM and the FEM with the exact solution (Riccardi, 1998), for remote 

uniaxial tension σzz = 1, µ0 / K0 = 0.2142, µp / K0 = 2.097 10−4, Kp / K0 = 0.6. 
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Figure 9. Two interacting rubber inhomogeneities in a polymer matrix (Fig. 3). Comparison 
of the evolution of the maximal von Mises stress with the separation distance for triaxial 

(σe = 0.199 σxx for d / a = ∝ ), biaxial (σe = 1.66 σxx for d / a = ∝ ) and uniaxial (σe = 1.74 σzz 
for d / a = ∝ ) tension. µ0 / K0 = 0.2142, µp / K0 = 2.097 10−4, Kp / K0 = 0.6. 

7. DISCUSSION 

The EIM gives reasonably accurate results for the particular case of interacting cavities, 
where the stress concentration factors are well predicted provided that the separation distances 
exceed typically 10 % of the radius of the cavities. Parameters involving mean values over the 
volume of an inhomogeneity are likewise accurately estimated by the EIM for both cavities 
and rubber inhomogeneities. On the other hand, for inhomogeneities stiffer than the matrix, 
the discrepancy between the exact results and those of the EIM is large. This is clearly due to 
the high level of stress induced in a stiff neighbouring inhomogeneity by superposition of the 
elastic fields obtained for a single inhomogeneity in an infinite matrix. The quantities Jq and 
Lq, based respectively on stress discontinuities at the interface and static equilibrium, are 
therefore well suited to evaluate the accuracy of the EIM solutions for both soft and stiff 
inhomogeneities. 

There are two reasons for the problems of convergence when third order expansions are 
used. Firstly, the functions involved in D are not well described by Taylor series outside the 

inclusions. Secondly, the β
p
(a, b, c)
j

 values obtained for an order of expansion of less than T 

(a + b + c < T) depend on T. This could moreover explain some "instability" of the 
convergence, despite the impossibility of proving convergence or non convergence 
mathematically. 

Although the EIM gives only approximate stress concentrations for realistic materials 
containing 10 % or more rubber, it seems to represent a good compromise between the 
required accuracy and the necessity of dealing with large numbers of particles in order to 
analyse the hydrostatic stress in rubber inhomogeneities (Géhant, 1999). Thus, rubber may be 
considered to behave to a first approximation as a compressible fluid. The order of magnitude 
of the variation of the hydrostatic stress in rubber inhomogeneities is then given by the ratio 
µp / Kp and the hydrostatic pressure is almost uniform and directly related to the volume 
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change integrated over the entire volume of a particle. Consequently, zero order 
computations give accurate results for the hydrostatic stresses in rubber inhomogeneities. 

The effect of interactions on stress concentrations is generally strong and may be expected 
to influence the occurrence of plasticity. In the case of uniaxial tension, the geometrical 
configuration used here induces a shielding effect and hence the influence of the separation 
distance on the von Mises stress concentration is almost zero. However, this influence 
increases with triaxiality and an amplifying effect is observed. Since the crack tip stress fields 
for thick plates are described by the results for remote equal triaxial tension, interactions are 
expected to strongly affect the occurrence of plasticity ahead of a crack tip. This remark is 
nevertheless obviously not valid in the case of invading plasticity. 

8. CONCLUSIONS 

As far as we know, there exists no ideal method of calculating the stresses induced by 
many interacting inhomogeneities. In the case of rubber-like inhomogeneities, where the 
parameter of interest is the hydrostatic stress inside an inhomogeneity, the EIM nevertheless 
gives reasonably accurate results, even for zero order expansions. This suggests that the EIM 
could be used to estimate the hydrostatic stress distributions in representative volume 
elements of rubber toughened PMMA or PS. However, it is still necessary to find a better way 
of combining the elementary eigenstrains, in order to check convergence of the method before 
the fourth order expansion of the Taylor series. 
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APPENDIX 1 : ELASTIC ENERGY 
Contrary to the preceding sections, we use for clarity in this appendix the classical indices 

for stress and strain. It can be demonstrated from Eshelby (1957) that the so-called interaction 
energy takes the same form for one or more inhomogeneities in the case of an exact solution. 
We first decompose the strain field ε 

ij into the sum of the remote field ε0
ij and the effect of all 

the eigenstrains e 
ij arising from inhomogeneities, the respective associated displacement fields 

being u0000 and ue. To obtain the state 1, an external pressure t* is applied at the interfaces of the 
inhomogeneities such that this state is related to e 

ij. If σ+
ij and σ−

ij denote respectively the 
stresses induced by e just outside and inside an interface, t* is expressed as: 

t*i  = (σ−
ij − σ+

ij) nj     (A1. 1) 

where n is the normal vector away from the interface. Owing to the equilibrium at the 
interface, for an exact solution 

(σ−
ij + Cp

ijkl ε
0
kl) nj + (σ+

ij + C0
ijkl ε

0
kl) (−nj ) = 0   (A1. 2) 

so that  

t*i  = − (Cp
ijkl − C0

ijkl) ε
0
kl nj     (A1. 3) 

At this stage, the elastic potential energy is 

W1 = 
1
2 �

p=1

N
 ��
Sp

 

 t* ue ds     (A1. 4) 

where N is the number of inhomogeneities and Sp the surface of the pth inhomogeneity. To 
obtain the final state, one then has to superimpose the field ε0

ij on the state 1, with the result 

that ε0
ij now generates tractions opposing t*. Deducing the energy from the work of external 

forces leads to 

Wtotal = 
1
2 �

p=1

N
 {��

Sp

 

 t* (u0000 + ue) ds + ��
Sext

 

  C0
ijkl (ε

0
kl + 2 e 

kl) nj u
0
i  ds}  (A1. 5) 

in which the stress term associated with eij is a second order term relative to ue. The stresses 
induced by eigenstrains are assumed to vanish at the boundary while the term associated with 
C0

ijkle
 
kl nj u

0
i  in eq. (A1. 5) is assumed to be zero. Hence displacement boundary conditions are 

defined which are related to u0000 at infinity. Applying Gauss's theorem in eq. (A1. 5) and using 
eq. (A1. 2) gives 

Wtotal = W0 + 
1
2�p=1

N
 ��
Ωp

 

  (C0
ijkl − Cp

ijkl) ε
0
kl (ε

0
ij + e 

ij) dv   (A1. 6) 
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where W0 is the elastic energy induced by ε0

kl if the medium did not contain any 

inhomogeneity. Noting from eq. (9) that C0
ijkl β

 
kl = (C0

ijkl − Cp
ijkl) (ε

0
kl + e 

ij), one finally obtains 
the classical result 

Wtotal = W0  +−   �
p=1

N
  
1
2�
�

Ωp

 

  C0
ijkl ε

0
ij β

 
ij dv =  W0 +− ∆U   (A1. 7) 

the positive or negative sign depending on the boundary conditions: positive for stress and 
negative for displacement boundary conditions. The integral in the second term is the 
supplementary elastic energy related to the presence of inhomogeneities (Eshelby, 1957). It 
should be noted that eq. (A1. 7) can also be derived using variational principles (Hill, 1963). 
In the case of a uniform remote field εεεε, it follows that any odd term in the expansion of βkl in 
a Taylor series has no effect on the supplementary elastic energy ∆U. Since e(x) = −e(−x), the 
supplementary work done by external forces is in fact zero for odd terms. 

Equation (A1. 7) involves Taylor series integrated over a spherical domain whereas both ε0
ij 

and β 
kl are of the form xa yb zc. Changing into spherical coordinates gives 

x = r cos(θ) sin(ϕ) , y = r sin(θ) sin(ϕ) , z = r cos(ϕ) , 

Ι
 
 
a b c

= ��

ϕ = 0

π

  ��
θ = 0

2π

  ��
r = 0

R

  { r cos(θ) sin(ϕ)}
a
 
 
 { r sin(θ) sin(ϕ)}

b
 
 
 { r cos(ϕ)}

c
 
 
r2 sin(ϕ) dr dθ dϕ (A1. 

8) 

Using the notation Mp, q = ��
t = 0

π/2

  {sin(t)}p {cos(t)}q dt, and remarking that Mp, q = 
p − 1
q + p Mp −  2, q 

if p ≥ 2, M1, q = 
1

1 + p , M0, q = 
(q − 1)(q − 3) ... 5. 3. 1

q (q − 2)(q − 4) ... 6. 4. 2 if q is even, 

M0, q = 
(q − 2)(q − 4) ... 6. 4. 2
(q − 1)(q − 3) ... 5. 3. 1 if q is odd and M0, 0 = π/2, one obtains 

Ι
 
 
a b c

 = 
8 R

a + b + c + 3
 
 

a + b + c + 3  Ma, b  Ma + b + 1, c if a and b and c are even  (A1. 9) 

and as expected for an antisymmetric function, Ι
 
 
a b c

 = 0 if a, b or c is odd. 

• First case a = b = 0 and c ≥ 0 is even   Ι
 
 
0 0 c

 = 
4 π R

c + 3
 
 

(c + 3)(c + 1)  

• Second case a ≠ 0, b ≠ 0 are even and c = 0  Ι
 
 
 a b 0

 = 
8 R

a + b + 3
 
 

 F(a) F(b)

F(a + b + 4)   

• Third case a ≠ 0, b ≠ 0, c ≠ 0 and all are even Ι
 
 
 a b c

 = 
8 R

a + b + c + 3
 
 

 F(a) F(b) F(c) 

F(a + b + c + 4)   
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where F(n) = (n − 1)(n − 3) ...  5. 3. 1. 

In the case of a uniform remote field, third order calculations give 

U = U0 − �
q = 1

N
 
2 π rq

3

3  C0
ijkl ε

q
(0, 0, 0)
ij

 {β
q
(0, 0, 0)
kl

 + 
rq

2

5  (β
q
(2, 0, 0)
kl

 + β
q
(0, 2, 0)
kl

 + β
q
(0, 0, 2)
kl

)} 

 (A1. 10) 

This result is analogous to that presented in the appendix of Rodin and Hwang (1991). 

APPENDIX 2 : ELASTIC POTENTIALS 
Considering the equation (7) given in § 3.2, all displacements and strains are known once 

the volume integral Φ is known: 

Φ (x, a, b, c) = ��
Ω

 

  x'a y'b z'c

 �x' − x� dx'     (A2. 1) 

Following [Ferrers, 1877; Dyson, 1891], Ω being a spherical domain, one obtains Φ 
analytically. The potential has a different expression Φi inside and Φo outside the domain Ω. 
Denoting a the radius of the spherical domain Ω and r = �x�, these potentials inside the 
domain are: 

Φi (x / a, 0, 0, 0) = 2 π (a2 − r2 / 3) 
Φi (x / a, 1, 0, 0) = 2 π (a x / 3 − r2 x / 5 a) 
Φi (x / a, 2, 0, 0) = π (a2 / 3 − 2 r2 / 15 + r4 / 35 a2 + 2 x2 / 5 − 2 r2 x2 / 7 a2) 
Φi (x / a, 1, 1, 0) = 2 π (x y / 5 − r2 x y / 7 a2) 
Φi (x / a, 3, 0, 0) = π (a x / 5 − 6 r2 x / 35 a + r4 x / 21 a3 + 2 x3 / 7 a − 2 r2 x3 / 9 a2) 
Φi (x / a, 2, 1, 0) = π (a y / 15 − 2 r2 y / 35 a + r4 y / 63 a3 + 2 x2 y / 7 a − 2 r2 x2 y / 9 a3) 
Φi (x / a, 1, 1, 1) = π (2 x y z / 7 a − 2 r2 x y z / 9 a3) 
Φi (x / a, 4, 0, 0) = π (2 a2 / 15 − 2 r2 / 35 + 2 r4 / 105 a2 − 2 r6 / 693 a4 + 6 x2 / 35 − 4 r2 x2 / 

21 a2 + 2 r4 x2 / 33 a4 + 2 x4 / 9 a2 − 2 r2 x4 / 11 a4) 
Φi (x / a, 3, 1, 0) = π (3 x y / 35 − 2 r2 x y / 21 a2 + r4 x y / 33 a4 + 2 x3 y / 9 a2 − 2 r2 x3 y / 

11 a4) 
Φi (x / a, 2, 2, 0) = π (2 a2 / 45 − 2 r2 / 105 + 2 r4 / 315 a2 − 2 r6 / 2079 a4 + x2 / 35 − 2 r2 x2 

/ 63 a2 + r4 x2 / 99 a4 + y2 / 35 − 2 r2 y2 / 63 a2 + r4 y2 / 99 a4 + 2 x2 y2/ 9 a2 − 2 r2 x2 y2/ 11 a4) 
Φi (x / a, 2, 1, 1) = π (y z / 35 − 2 r2 y z / 63 a2 − r4 y z / 99 a4 + 2 x2 y z / 9 a2 − 2 r2 x2 y z / 

11 a4) 
Φi (x / a, 5, 0, 0) = π (2 a x / 21 − 2 r2 x / 21 a + 10 r4 x / 231 a3 − 10 r6 x / 1287 a5 + 10 x3 / 

63 a − 20 r2 x3 / 99 a3 + 10 r4 x3 / 143 a5 + 2 x5 / 11 a3 − 2 r2 x5 / 13 a5) 
Φi (x / a, 4, 1, 0) = π (2 a y / 105 − 2 r2 y / 105 a + 2 r4 y / 231 a3 − 2 r6 y / 1287 a5 + 2 x2 y / 

21 a − 4 r2 x2 y / 33 a3 + 6 r4 x2 y / 143 a5 + 2 x4 y / 11 a3 − 2 r2 x4 y / 13 a5) 
Φi (x / a, 3, 2, 0) = π (2 a x / 105 − 2 r2 x / 105 a + 2 r4 x / 231 a3 − 2 r6 x / 1287 a5 + x3 / 63 

a − 2 r2 x3 / 99 a3 + r4 x3 / 143 a5 + x y2 / 21 a − 2 r2 x y2 / 33 a3 + 3 r4 x y2 / 143 a5 + 2 x3 y2 / 
11 a3 − 2 r2 x3 y2 / 13 a5) 

Φi (x / a, 3, 1, 1) = π (x y z / 21 a − 2 r2 x y z / 33 a3 + 3 r4 x y z / 143 a5 + 2 x3 y z / 11 a3 − 
2 r2 x3 y z / 13 a5) 

Φi (x / a, 2, 2, 1) = π (2 a z / 315 − 2 r2 z / 315 a + 2 r4 z / 693 a3 − 2 r6 z / 3861 a5 + x2 z / 
63 a − 2 r2 x2 z / 99 a3 + r4 x2 z/ 143 a5 + y2 z / 63 a − 2 r2 y2 z / 99 a3 + r4 y2 z / 143 a5 + 2 x2 
y2 z / 11 a3 − 2 r2 x2 y2 z / 13 a5) 
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(A2. 2) 

and outside the domain are: 
Φo (x / a, 0, 0, 0) = 4 π (a3 / 3 r) 
Φo (x / a, 1, 0, 0) = 4 π (a4 x / 15 r3) 
Φo (x / a, 2, 0, 0) = 4 π (− a5 / 105 r3 + a3 / 15 r + a5 x2 / 35 r5) 
Φo (x / a, 1, 1, 0) = 4 π (x y a5 / 35 r5) 
Φo (x / a, 3, 0, 0) = 4 π (− a6 x / 105 r5 + a4 x / 35 r3 + a6 x3 / 63 r7) 
Φo (x / a, 2, 1, 0) = 4 π (− a6 y / 315 r5 + a4 y / 105 r3 + a6 x2 y / 63 r7) 
Φo (x / a, 1, 1, 1) = 4 π (a6 x y z / 63 r7) 
Φo (x / a, 4, 0, 0) = 4 π (− a7 / 1155 r5 − 2 a5 / 315 r3 + a3 / 35 r − 2 a7 x2 / 231 r7 + 2 a5 x2 / 

105 r5 + a7 x4 / 99 r9) 
Φo (x / a, 3, 1, 0) = 4 π (− a7 x y / 231 r7 + a5 x y / 105 r5 + a7 x3 y / 99 r9) 
Φo (x / a, 2, 2, 0) = 4 π (a7 / 3465 r5 − 2 a5 / 945 r3 + a3 / 105 r − a7 x2 / 693 r7 + a5 x2 / 315 

r5 - a7 y2 / 693 r7 + a5 y2 / 315 r5+ a7 x2 y2 / 99 r9) 
Φo (x / a, 2, 1, 1) = 4 π (− a7 y z / 693 r7 + a5 y z / 315 r5 + a7 x2 y z / 99 r9) 
Φo (x / a, 5, 0, 0) = 4 π (5 a8 x / 3003 r7 − 2 a6 x / 231 r5 + a4 x / 63 r3 − 10 a6 x3 / 1287 r9 + 

10 a6 x3 / 693 r7 + a8 x5 / 143 r11) 
Φo (x / a, 4, 1, 0) = 4 π (a8 y / 3003 r7 − 2 a6 y / 1155 r5 + a4 y / 315 r3 − 2 a8 x2 y / 429 r9 + 

2 a6 x2 y / 231 r7 + a8 x4 y / 143 r11) 
Φo (x / a, 3, 2, 0) = 4 π (a8 x / 3003 r7 − 2 a6 x / 1155 r5 + a4 x / 315 r3 − a8 x3 / 1287 r9 + a6 

x3 / 693 r7 − a8 x y2 / 429 r9 + a6 x y2 / 231 r7 + a8 x3 y2 / 143 r11) 
Φo (x / a, 3, 1, 1) = 4 π (− a8 x y z / 429 r9 + a6 x y z / 231 r7 + a8 x3 y z / 143 r11) 
Φo (x / a, 2, 2, 1) = 4 π (a8 z / 9009 r7 − 2 a6 z / 3465 r5 + a4 z / 945 r3 − a8 x2 z / 1287 r9 + 

a6 x2 z / 693 r7 − a8 y2 z / 1287 r9 + a6 y2 z / 693 r7 + a8 x2 y2 z / 143 r11) 
(A2. 3) 


	Introduction
	Exact axisymmetric solution for two interacting spherical inhomogeneities
	The Equivalent Inclusion Method
	Brief review of the EIM
	Eigenstrain and stress free strain

	Quality of the solution
	Stress jump at the interface of the inhomogeneities
	Equilibrium equations inside the inhomogeneities

	Accuracy of the method
	Comparison with results from the literature: case of cavities
	Case of glass particles in a polymer matrix

	Analysis of stresses for rubber inhomogeneities
	Discussion
	Conclusions
	References
	Appendix 1 : Elastic energy
	Appendix 2 : Elastic Potentials

