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ABSTRACT: Uniaxial deformation at finite strain of coalesced core/shell (hard core/film-forming shell)
latex films is investigated by means of micromechanical calculations. Elongation ratios, strain rate, and
energy density distribution within the film are presented and confirm the strain amplification phenomenon
well-known in the filled elastomer area. The important role of the core—shell interphase on the overall
film mechanical behavior is stressed by the presented results. Moreover, strain—stress curves have been
calculated without adjustable parameters and compared to experimental ones in order to gain substantial

~ information about the deformation mechanism. It is then proposed that uniaxial deformation of coalesced
core/shell latex films proceed through two simultaneous and/or successive mechanisms: isotropic matrix
deformation and geometrical core rearrangement within the film. The stiffening of coalesced core/shell
latex films appears therefore to be mainly due to mechanical effects.

I. Introduction

Because volatile organic compounds have to be avoided

as much as possible for ecological reasons, water-based
coatings are becoming extensively used. Therefore,
increasing research projects have been directed toward
coalesced latex films. It is well established that low 7',
polymer-based latexes are better film-forming matemal
than high 7; ones. However, the lower the polymer T¢,
the poorer the material mechanical behavior will be.

Coalesced latex films with reasonable mechanical pProp-

erties may be obtained, for instance,! with high T
(glassy state) polymer core and ﬁlm—forming pol-ymer
shell particles. The resulting film 1s then equivalent
to a biphasic material having an elastomeric matrix
with regularly distributed high modulus inclusions.
To date, most of the mechanical studies dealing with
biphasic polymer materials have been devoted to rubber-
modified thermoplastics, which are in some ways the
opposite of filled elastomers. Moreover, while studies
on mechanical behavior at small strain may be applied
to both types of biphasic polymer materials,? at finite

strain no general model has been devised. Mulhns and.

Tobin® have proposed the first calculations intended to
model the mechanical behavior at finite strain of filled
elastomer using the mechanical behaviors of each phase.
Because the modulus increase in the filled elastomer
arises from “distortion of the stress pattern in the
rubber matrix” and “absence of deformation in the
filler”, they proposed to relate the mean local strain
experienced by the rubber phase to. the overall strain
of the sample by a strain-amplification factor greater
than 1 (strain amplification phenomenon). However,
based on that approach, no detailed information is
available on the elongation ratio, strain rate, and energy
density distributions within the filled elastomer. More-
over, these questions have not been addressed by more
recent publications*® concerning the mechanical proper-
ties of filled elastomers.

In the present contribution, the mechanical behavior
at finite strain of coalesced core/shell latex films has
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Figure 1. Elementary cell before and after uniaxial elonga-
tion used with the micromechanical model.
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been investigated through mechanical simulation, the
main objective being to thoroughly understand the
deformation mechanism of these biphasic films. Indeed,
one has to determine if stiffening of coalesced core/shell
latex films is due to mechanical or physico-chemical
stiffening. For instance, it is well-known that the
reinforcement of natural rubber by the carbon black
particles is mainly due to the physico-chemical effects.

II. Micromechanical Calculations

Model Development. Latex film formation is ad-
mitted to proceed through three successive stages,
namely water evaporation, particle coalescence, and
aging.® After the first stage, it is assumed that particles
are packed according to the face-centered cubic struc-
ture (fce)” because it is the most efficient way of packing
spheres. However, it has been recently® shown that the
body-centered cubic (bce) structure can also be observed
1n coalesced latex films. When film formation is com-
plete, each particle in an fec array and in a bee array is
deformed into a rhombic dodecahedron and into a
tetrakaidecahedron, respectively. Dealing with coa-
lesced core/shell latex films, these structures will have
the “hard” core at their center. Because a rhombic
dodecahedron and a tetrakaidecahedron are close to a
sphere in the geometrical point of view, the elementary
cell used for calculations is as depicted in Figure 1.

This elementary cell is based on an undeformable
sphere surrounded by an elastomeric spherical shell, the
two radii being calculated from the core volume fraction
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(¢). Moreover, the interphase between the latex particle
core and the shell is not considered since its nature and
1its mechanical behavior are unknown. However, perfect
adhesion (neither debounding nor cavitation) is assumed
between the elementary cell core and shell. Upon
uniaxial traction, each elementary cell of the coalesced
core/shell latex films is assumed to be deformed the
same way. By calculating the deformation energy of the
unique cell, the material’s overall mechanical behavior
may be estimated. In order to take into account the
interaction between neighboring cells, it is assumed that
uniaxial deformation of a spherical cell leads to an
elliptical cell, whose principal axis is parallel with the
deformation direction (Figure 1). The maximum exten-
sion ratio for these calculations is obviously reached
when the outer bound of the shell touches the inner core.
At this stage, it is expected that the material would
undergo a mechanical transition; i.e., the kinematics of
the deformation would have to change since the rigid
cores remain almost spherical. Indeed, since the el-
ementary cell core is based on a glassy state polymer
and the shell on a rubbery state polymer, it can be
assumed that the elementary cell core is not deformed
during the traction experiment and that the elementary
cell shell is deformed at constant volume.? Eventually,
with the strain field in the shell and the strain-energy
function of shell polymer, the mechanical behavior of
the coalesced core/shell latex film may be estimated. In
addition, the strain corresponding to the massive rear-
rangement of the cells may also be estimated.

The strain field is obtained using two additional and
reasonable hypotheses. Firstly, it is assumed that
spherical slices of the elementary cell shell become
elliptic after uniaxial elongation. Secondly, slices can
be divided into several torai that keep their volume
constant during the traction experiment. Let us define
A(R) and B(R) as the principal axes of an elliptical slice
that was spherical with radius R in the undeformed
state. Using the volume conservation hypothesis, it is
easy to get the following relation between A(R) and B(R):

B(R) A(R)* = R® (1)

The boundary conditions give additional relations:
B(R,) =R, (2)
B(R,) = AR, (3)

where A is the macroscopic cell extension ratio and
A € [1; (R1/Rp)?], Ry is the core radius of the elementary
cell, and R; 1s the elementary cell radius before defor-
mation.

In order to find the stram field, the last problem to
be solved is to know the functmn A(R), which has to

satisfy the following conditions:

AR,) = R,/V4 (4)
AR, =R, (5)
%(RO) ~1 (6)
dA .
PR =20  with RelRyR] (7)

Conditions 5 and 6 indicate simply that there is perfect
adhesion between the core and shell. Since the core is

A(R) =R, +
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Figure 2. Examl.')le plot of A(R) for ¢ = 0.2, A = 1, and 4 =
1.5. |

supposed to be undeformable, the shell bound to it will
experience almost no deformatlen durlng the expen-
ment. Condition. 7 is necessary in order to avoid
overlapping of slices. Eventually, for the sake of
simplicity, A(R) should be a function having only one
parameter in order to be easily optimized, as explained
later. If one takes A(R) as a third-order polynomial
function of R — Ry, it can be shown that condition 7 is
not fulfilled in the overall range of 4.

Figure 2 presents an example of an A(R) p]et Before
any deformation A(R) is represented by the straight line
between points A'and C. When the elementary cell 1s
stretched along its Z-axis, A(R) becomes unknown but
goes from points A to C’. Two extreme ways may then
be used to do so. The first one is AUC’, which corre-
sponds to almost no deformation of the smaller radius
slices and high deformation of higher radius slices. The
second one is ALC’, which corresponds to small defor-
mation of the higher radius slices and high deformation
of smaller radius slices.” Obviously, the first one seems
to be the most energy-consuming because higher radius
slices represent more material volume. However, be-
tween these two alternatives, any other A(R) function
has to be taken into account. Therefore the following
relatwn has been chosen

Rl "Re

AR — R +

B, 1-wiz, g|_

[1 — exp(—a(R — Ry))] R R, « 2

g(R — R,) exp(—a(R — R,)) (8)

where o is the parameter to be optimized using the
minimum energy principle and a € [0; +4oo].

y — 1
5: ﬁR ._R. -
1 1 0

a 1- exp(a(R, — R,))

Then a point located at (R sin 6, K cos 8) moves to
1ts new coordinates (A(R) sin 6, B(R) cos &) in the
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Figure 3. Deformation energy vs o for ¢ = 0.2 and 4 = 1.3.

undeformed state. 6’ is calculated numerically using
the following equation:

yA(R)
0 R2

g = arcsin cos x Ae As dx (9)

where

g ——

RV 2
Ae = \/(%(R) COS :c) + (%CR) sin x) X
A(R) ))

dB - R
cos(arctan(aZ(R) tan x) arctan( B tan x

As = JAXR) sin® x + BXR) cos® x

Equation 9 arises from the conservation volume
hypothesis (Appendix). One is now able to calculate the

strain tensor at finite strain!? within the elementary
cell shell. However, it 1s relatively difficult to give an
analytlcal solution of it.” Therefore, it has been com-
puted. usmg the following procedure. The elementary
cell shell is split into N torai. Using eqs 8 and 9, new
coordinates of each torus can be calculated. Usmg a
finite-element-like form function with four nodes, the
strain tensor is computed at the center of the con31dered
torus. The deformation energy of each torus is then
computed and added to give the total deformation
energy. However, the computed total deformation
energy depends upon the strain field, which in turn 1s
a function of a. Therefore, in order to find the most
likely total deformation energy, one needs the optimum
strain field, which corresponds to the optimum a value
(uopt) Qopt 18 simply computed using the minimum
energy prmmple which states that the most likely state
corresponds to the less energy-consuming one. The
optimum strain field is estimated by determining the a
value that minimizes the mechanical energy. Figure 3
presents the deformation energy as functmn of a for A
= 1.3 and ¢ = 0.2.

As can be seen, 1t 1s easy to find aopt. However, when
the macroscopic strain increases, Q4 has to be updated
Knowing o,y for each 4, the strain-energy curve is then
obtained for specific ¢ and shell strain-energy function.

- Results. Based on these micromechanical calcula-
tions, one is able to investigate the uniaxial detozmation
of the elementary cell. The results presented below
have been calculated using the Mooney—Riviin equa-
tion!® with C; = 0.019 and Cy = 0.14 for the strain-
energy function of the elementary cell shell. These
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Mooney—Rivlin coefficients C; and Cs correspond to the
initial mean strain rate (9.3 x 1074 s71). However, any
other strain-energy relation expressed as a function of
the first and second strain invariants of the Green’s
strain tensor may be used.

The deformation of the elementary cell is described
by three principal extension ratios: two in the (X, Z)
plane (1, A2) and one perpendicular to it (13). Parts b—d
of Figure 4 present the three principal extension ratio
distributions within the elementary cell shell.

First of all, one may easily observe the strain ampli-
fication phenomenon in Figure 4b where the mean local
strain is higher than the macroscopic strain. Further-
more, close to the elementary cell core, two different
situations are occurring (IFigure 4b,c). At the core pole
and equator, 4; and A2 are almost equal to 1, which
indicates no deformation in the (X, Z) plane. It is
consistent with the hypothesis of perfect adhesion
between the elementary cell core and shell. At the core
pole and core equator, the shell material is experiencing
mainly elongation and compression, respectively. How-
ever, since the shell volume is constant and the core
undeformable, the shell material bounded to the core
pole and equator cannot be deformed. The only way for
the shell material bounded to the core to experience
deformation is shearing, in order to satisfy the model
hypothesis. At 45° with the deformation axis and close
to the core, one may observe the highest values of both
extension ratios. As shown in Figure 4a, that region is
experiencing shearing strain for reasons explained
previously. Away from the elementary cell core, one
may observe a small extension ratio (equivalent to the
macroscopic extension ratio) area at roughly 30° with
the deformation direction.

Figure 4d presents results of the extension ratio A3
perpendicular to plane (X, Z). A3 corresponds to the ratio
between a torus radius after and before deformation. It
18 therefore a parameter quantifying the “contraction”
of shell torai. A3 is almost equal to 1 for shell bounded
to the core. Comparing A3 of the two torai located at
the same radius R but at different heights Z, one may
observe that the higher the torus is located, the lower
A3 will be. Toral are more “contracted” when they are
located at a higher Z value. This is a consequence of
the undeformable core hypothesis. The same explana-
tion holds obviously for torai located at the same Z
coordinate but a different R coordinate.

Three different strain rates describe as well the local
strain rate of the elementary cell. However, dealing
with uniaxial elongation, the common strain rate used
corresponds to the first strain rate. It is of interest to
compare the local first principal strain rate to the overall
first strain rate (Figure 5).

Shell material bounded to the core pole and core
equator has a zero strain rate because of the perfect
core/shell adhesion hypothesis. The highest strain rate
(5 times higher than the macroscopic strain rate) is
experienced by shell material bounded to the core and
located at 45° with the deformation axis. Away from
the core, one may observe small strain rate (equivalent
to the macroscopic strain rate) area. Eventually, the
mean local strain rate is higher than the macroscopic
strain rate, as predicted by the strain amplification
phenomenon. The shell material deformation is there-
fore highly dependent upon its location within the film.
For instance, the material bounded to the core is much
more deformed and at a higher strain rate than any
other part of the matenal.
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Figure 4. Results fromn the micromechanical model for 4 = 1.3 and ¢ = 0.2: (a) deformed and undeformed states; (b) first principal

extension ratio distribution; (c¢) second extension ratio
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distribution; (d) third principal extension ratio distribution.

]

As mentioned earlier, shell material i1s not only
deformed at different extension ratios but also at
various strain rates. Therefore, if the shell material
behavior is strain dependent, one has to take it into
account during energy density computation. However,
for reasons explained later (see Discussion in section
ITI), the calculations presented herein assumed no strain
rate dependence. Parts a and b of Figure 6 present the
energy density distribution within the elementary cell
shell.

It is clear in Figure 6a that the highest energy-
consuming area is the one bounded to the core and
located at 45° with the elongation direction. Further-
more, away from the elementary cell core a low energy-
consuming zone may be observed. The same observa-
tions hold for higher strain, as shown in Figure 6b.

Knowing the total deformation energy as a function
of macroscopic strain, it is easy to compare the strain—
stress curves obtained by micromechanical calculations
with experimental ones (Figure 7 to Figure 8). Core/
shell latexes have been prepared by means of a two-
step emulsion polymerization and dried under standard
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Figure 7. Experimental and calculated with the microme-

chanical model strain—stress curves. Crosshead speed = 200

mm/min,

Stran

Figure 8. Experimental and calculated with the microme-
chanical model strain—stress curves. Crosshead speed = 200

mm/min.

conditions (23 °C, 60% relative humidity) for 25 days.?
The core is based on poly(methyl methacrylate), and the
shell is based on butyl acrylate—methyl methacrylate—
acrylic acid copolymer (T; = —5 °C). Film without inclu-
sions was prepared from homogeneous latex particles

based on the shell polymer. Uniaxial elongation experi-
ments were eventually carried out at 200 mm/min.

R
skt

Eshelby Analytical Solution

Figure 9. Deformed states calculated with the micromechani-
cal model and the Eshelby analytical solution: 4 = 1.01 and ¢
= (.20.

Figures 7 and 8 present comparisons between experi-
mental and calculated data with micromechanical model
strain—stress curves. For the sake of clarity, only a few
experimental points are shown on these curves.

Although the agreement between experimental and
calculated results is not perfect, one can be satisfied by
such results because no adjustable parameter has been
used. Furthermore, S-shaped stress—strain curves are
also predicted. However, in every case the predicted
curves are always above the experimental ones. Such
result will be discussed later. |

Discussion. Before discussing the previous results,
it is interesting to look into the details of the main
hypothesis of the micromechanical model, which 1is
expressed by eq 8. By means of it, one may easily get
the corresponding deformed state, but it is rather
difficult to estimate experimentally its correctness.
Using the autocoherent model, one may evaluate micro-
mechanical kinematics correctness at least at small
strain. Eshelby!? in 1957 found the analytical solution
for the deformation at small strain of a matrix contain-
ing ellipsoidal inclusions. It is therefore of interest to
compare the deformed state obtained by the microme-
chanical model and the Eshelby solution at small
strains. Such a comparison is presented in Figure 9.
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D

Sphere in Ellipsoid Sphere in Cylinder

Figure 10. Elementary cells used for finite element calcula-
tions.

Figure 9 shows that deformed states obtained by
micromechanical calculations and the Eshelby analyti-
cal solution are different. For instance, micromechani-
cal calculationis predict a higher shearing strain for the
shell material bounded to the core cell than the Eshelby
analytical solution does. On the other hand, the Eshel-
by analytical solution predicts a higher displacement
of shell material located at the edge of the elementary
cell than micromechanical calculations do. Although the
Eshelby analytical solution is valid for small core
volume fraction, such a comparison indicates that
micromechanical calculation results have to be tested
with another model, e.g., finite element, in order to be
fully reliable.

III. Finite Element Calculations

Model Development. The alternative model used
to study the mechanical behavior of coalesced core/shell
latex films is based on the finite element method. Two
different elementary cells have been used and are
depicted in Figure 10.

The first one is based on a quasi-undeformable sphere
surrounded by an elastomeric shell (sphere into el-
lipsoid), and the second one is based on the same quasi-
undeformable - sphere within an elastomeric cylinder

(sphere into cylinder), the cylinder height being equal”

to its diameter. With the sphere into ellipsoid elemen-
tary cell, it is assumed that the ellipsoid principal axis
is parallel to the deformation direction. Furthermore,
in order to take into account neighbouring cells, it is
assumed that points of the elementary cell surface
located at @ with the deformation direction will keep
their angles during the experiment. With the sphere
into cylinder elementary cell, it is assumed that the
cylinder edges remain vertical and that the top and the
bottom of the cylinder keep their disklike shape during
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the experiment. Such boundary conditions are simple
and conventionally used in finite elemental analysis.!?
The quasi-undeformable sphere mechanical properties
have been taken equal to those of poly(methyl meth-
acrylate) (Young modulus = 3000 MPa, Poisson coef-
ficient = 0.4). The elastomeric material strain-energy
function was defined by the Mooney—Rivlin equation
with C; = 0.019 and C; = 0.14. Unfortunately, the
software only allowed us to take into account the change
of Cy and Cy with temperature but not with the strain
rate. No attempt to suppress this limitation was made
for reasons explained later on (see Discussion 1n section
III). Finite element calculations were performed with
ABAQUS software.

Results. From finite element results, one may obtain
the spatial distribution of several parameters character-
izing the deformation of the elementary cell. Parts a
and b of Figure 11 present the energy density distribu-
tion obtained with the sphere in ellipsoid cell and sphere
in cylinder cell.

As can be seen, the results are quantitatively similar
to the ones obtamed with the micromechanical model.
The haghest energy-consuming region of the elastomeric
shell is the one located at 45° with the deformation
direction and bounded to the core cell, while the lowest
energy-consuming zone may be identified close the edge
of the cell and located between 30 and 60° with the
deformation direction.

'The strain—stress curves may also be obtained by
derivation of the total deformation energy. Figures 12
and 13 present the comparison between finite element
calculations and experimental stress—strain curves
(same experimental points as in Figures 7 and 8).

In both cases, the agreement between theoretical and
experimental results is very good for the pure elastomer.
However, the finite element analysis using the sphere

in ellipsoid cell overestimates the experimental data.

When the sphere in cylinder cell is used, the agreement
between theoretical and experimental results is good for
macroscopic extension ratio up to 1.2. But, for a higher
macroscopic extension ratio the model overestimates the
experimental data. - S -
Discussion. Energy density distribution results

obtained by finite element analysis have confirmed the
ones obtained with the micromechanical model. These
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Figure 12. Experimental and calculated with the finite
element analysis strain-—stress curves using the sphere in
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Figure 13. Experimental and calculated with the finite
element analysis strain—stress curves using the sphere in
cylinder cell. | -

results showed that the matrix material close to the core
is experiencing higher deformation and at a higher
strain rate than the rest of the matrix. Therefore, the
important role of the matrix-inclusions mterphase on

mechanical properties of the core/shell film, and more

generally of filled elastomer, is stressed by the presented
results. It is even possible to conclude that the inter-
phase is a favorable locus of fracture because of its high
energy density. These theoretical conclusions confirm
the well-known experimental results on mechanical
behavior of filled elastomers.1%15

Comparison of experimental and calculated strain—
stress curves has shown an interesting feature. Cal-
culations overestimate experimental results in every
case, although the finite element analysis using the
sphere in cylinder cell gave gaod agreement for exten-
sion ratios up to' 1.2. Three explanations may be
proposed to elucidate such results.

Firstly, the molecular weight distribution (MWD) of
the shell polymer in homogeneous films and films with
inclusions may be different. It has been proved re-
centlyl® that even. homogeneous particles may have
MWD spatial inhomogeneity. This phenomenon arises
mainly from higher 7 (average number of radicals per
particle) at the end of the polymerization than at the
beginning. By comparing MWD of two latexes, the first
one prepared by seeded emulsion polymerization (core/
shell latex) and the other by unseeded emulsion polym-
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erization (homogeneous latex), one may expect high 7
values (> 1) all the polymerization long for the first latex
type, and conventional n values (<0.5) for the second
latex type. With vinyl acetate such observations have
already been mentioned. Small 72 values (<0.5) were
obtained for unseeded polymerization,!” while high 7
values were estimated for seeded polymerization.l®
According to such considerations, the MWD of the shell
polymer in the core/shell latex will be smaller than in
the homogeneous latex. Since the mechanical behavior
of the shell polymer is calculated from the homogeneous
film, it may therefore be overestimated. However, it is
very difficult to check such an explanation experimen-
tally because specific extraction of the shell polymer in
coalesced core/shell latex particles is almost impossible.

Secondly, the experiments were performed at constant
crosshead speed. Therefore, the strain rate decreases
during the experiment (eq 10), while strain rate is
assumed constant in the calculations.

.1 v
i ==

Ll——/llnl (10)

where ¢ is the strain rate (s71), L is the specimen length
(mm), v 1s the crosshead speed (mm/s), and A is the
extension ratio.

However, it has been shown previously (Figure 5) that

- the mean local strain rate i1s also higher than the

macroscopic strain rate, because of the strain amplifica-
tion phenomenon. For instance, the local strain rate is
on average 2 times higher than the macroscopic strain
rate for ¢ = 0.2 and A, close to 1. On the other hand,
the strain rate decrease due to constant crosshead speed
18 only equal to 0.8 for A = 1.5. Therefore, the overes-
timation of experimental results by models cannot be
explained by the fact that the strain rate dependence
was not included in the calculations.

Thirdly, the agreement between models and experi-
ments is good for small strain. Since it is expected that
any arbitrary kinematically admissible strain field
overestimates the strain energy (demonstration has
been established for small strain deformation!®), one
may assume that the kinematics used for the calcula-
tions seems to be close to the real one for strain below
1.2, but not for higher strain. Therefore, it can be
surmised that a change of the kinematics occurs when
the strain becomes higher than 1.2. Indeed, it has been
mentioned that during calculations, the critical macro-
scopic extension ratio (A4t = (R1/Rp)?) is reached when
the outer bound of the cell shell touches the surface cell
core. A new kinematics, which has to be less energy
consuming than the isotropic matrix deformation as-
sumed in the presented calculations, has then to be
devised before 41 becomes close to Acit. Therefore, it may
be proposed that the deformation of a core—shell
coalesced latex film proceeds through two simultaneous
and/or successive kinematics: isotropic matrix deforma-
tion and geometrical core rearrangement in the film.
The first mechanism should be dominant at smaller
strain and/or low core/shell volume fraction and the
second one should dominate at higher strain and/or high
core/shell volume fraction. The proposed deformation

- mechanism is depicted in Figure 14.

IV. Conclusion

Film formation of (high T, polymer-based core/film-
forming polymer-based shell) latex particles gives rise
to films having regularly distributed high modulus
inclusions within an elastomeric matrix. The geo-
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Figure 14. Proposed deformation mechanism of the coalesced
core/shell latex films.

metrical periodicity of these films allowed one to model
their mechanical behavior at finite strain based on
elementary cell calculations. Two models were used and
gave similar results. Firstly, the study of the energy
density distribution showed that the matrix bounded
to the inclusions is the highest energy-consuming
region. Therefore, the matrix-inclusions interphase 1s
likely the most favorable locus of fracture in core/shell
coalesced latex films and special emphasis must be
directed toward it in order to take advantage of such a
situation. Secondly, experimental and calculated stress—
strain curves have been compared. It was shown that
a deformation mechanism based only on i1sotropic matrix
deformation is too energy consuming to be responsible
for the real biphasic film deformation. Therefore, it is
proposed that uniaxial deformation of coalesced core/
shell latex films proceeds through two simultaneous
and/or successive mechanisms: isotropic matrix defor-
mation and geometrical core rearrangement within the
film. Such an explanation has been tested by looking
at the surface of a deformed coalesced core/shell latex
film using atomic force microscopy and is presented in
the companion article. Eventually, although the me-
chanical model should be refined to take into account
the increase of local stiffness with the microscopic strain
rate, and so to attempt to estimate better the stress—
strain curves, it appears that stiffening is mainly due
to the mechanical effects. Moreover, the mechanical
model gives an upper limit for the strain that corre-
sponds to the beginning of the rearrangement of the

cores.
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Appendix

A point located at (R sin 6, R cos 6) in the undeformed
state moves to its new coordinates (A(R) sin &, B(R) cos

A(R)

Figure 15.
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9°) after deformation. The volume of an elliptical slice
between 0 and € 1s v4er, whereas the volume of a
spherical slice between 0 and 6 18 vynger-

- The volume of an elliptical slice between 0 and ¢
having A(R) as the small principal axis and dA as the
thickness 1s given by the following equation:

Vaer = [ 2TAR) cos x de ds

- As schematically represented in Figure 15, ds is the
derivative of the curvilinear abscissa whereas de is the
thickness of the elliptical slice perpendicular to ds. One
may then write

ds = vAZ sin® x + B? cos® x dx

de = de’ cos(arctan(g(R) tan x) —

. (A(R) N ))
arcitan B(R) an x
de’ = (%(R) cos x)2 + (%(R) sin x)z dR

Before deformation, one easily obtains the volume of
the spherical slice between 0 and 6:

Uundef — ffZJ‘ER cos x dR R dx = 27R” sin 6 dR

@’ 1s then simply calculated numerically by equating
Udef aNd Uundef-
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